Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Pharm ; 21(6): 2993-3005, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38722865

RESUMO

The susceptibility of lysosomal membranes in tumor cells to cationic amphiphilic drugs (CADs) enables CADs to induce lysosomal membrane permeabilization (LMP) and trigger lysosome-dependent cell death (LDCD), suggesting a potential antitumor therapeutic approach. However, the existence of intrinsic lysosomal damage response mechanisms limits the display of the pharmacological activity of CADs. In this study, we report that low concentrations of QS-21, a saponin with cationic amphiphilicity extracted from Quillaja Saponaria tree, can induce LMP but has nontoxicity to tumor cells. QS-21 and MAP30, a type I ribosome-inactivating protein, synergistically induce apoptosis in tumor cells at low concentrations of both. Mechanistically, QS-21-induced LMP helps MAP30 escape from endosomes or lysosomes and subsequently enter the endoplasmic reticulum, where MAP30 downregulates the expression of autophagy-associated LC3 proteins, thereby inhibiting lysophagy. The inhibition of lysophagy results in the impaired clearance of damaged lysosomes, leading to the leakage of massive lysosomal contents such as cathepsins into the cytoplasm, ultimately triggering LDCD. In summary, our study showed that coadministration of QS-21 and MAP30 amplified the lysosomal disruption and can be a new synergistic LDCD-based antitumor therapy.


Assuntos
Apoptose , Autofagia , Lisossomos , Saponinas , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Saponinas/farmacologia , Apoptose/efeitos dos fármacos , Humanos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Animais , Sinergismo Farmacológico , Proteínas Inativadoras de Ribossomos Tipo 1/farmacologia , Camundongos , Quillaja/química , Antineoplásicos/farmacologia
2.
J Pept Sci ; : e3628, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950972

RESUMO

Cell-penetrating peptides (CPPs) with better biomolecule delivery properties will expand their clinical applications. Using the MLCPP2.0 machine algorithm, we screened multiple candidate sequences with potential cellular uptake ability from the nuclear localization signal/nuclear export signal database and verified them through cell-penetrating fluorescent tracing experiments. A peptide (NCR) derived from the Rev protein of the caprine arthritis-encephalitis virus exhibited efficient cell-penetrating activity, delivering over four times more EGFP than the classical CPP TAT, allowing it to accumulate in lysosomes. Structural and property analysis revealed that a high hydrophobic moment and an appropriate hydrophobic region contribute to the high delivery activity of NCR. Trastuzumab emtansine (T-DM1), a HER2-targeted antibody-drug conjugate, could improve its anti-tumor activity by enhancing targeted delivery efficiency and increasing lysosomal drug delivery. This study designed a new NCR vector to non-covalently bind T-DM1 by fusing domain Z, which can specifically bind to the Fc region of immunoglobulin G and effectively deliver T-DM1 to lysosomes. MTT results showed that the domain Z-NCR vector significantly enhanced the cytotoxicity of T-DM1 against HER2-positive tumor cells while maintaining drug specificity. Our results make a useful attempt to explore the potential application of CPP as a lysosome-targeted delivery tool.

3.
Toxicol Appl Pharmacol ; 449: 116139, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35750203

RESUMO

Biomacromolecules such as proteins and nucleic acids are very attractive due to their high efficiency and specificity as cancer therapeutics. In fact, the endocytosed macromolecules are often trapped in the endosomes and cannot exhibit pharmacological effects well. Many strategies have been used to address this bottleneck, and one promising approach is to exploit the endosomal escape-promoting effect of triterpenoid saponins to aid in the release of biomacromolecules. Here, Raddeanin A (RA, an oleanane-type triterpenoid saponin) was proved to significantly promote endosomal escape as it recruited Galectin-9, an endosomal escape event reporter. As expected, RA effectively enhanced the anti-tumor effect of MAP30 (a type I ribosome-inactivating protein derived from Momordica charantia). However, based on the results of fluorescent colocalization, RA did not significantly promote MAP30 release from endosomes, suggesting that RA enhances MAP30 activity not only by promoting endosomal escape. Furthermore, it was found that the inhibitors of micropinocytosis and caveolae could almost completely inhibit the cytotoxicity of MAP30 combined with RA without affecting the cytotoxicity of MAP30 alone, indicating that RA may regulate the endocytic pathway of MAP30. Meanwhile, the effect of RA is related to the intra vesicular pH and cholesterol content on cell membrane, and is also cell-type dependent. Therefore, RA enhanced the anti-tumor effect of MAP30 in multiple ways, not just by promoting endosomal escape. Our findings will help to further decipher the possible mechanisms by which triterpenoid saponins enhance drug activity, and provide a new perspective for improving the activity of endocytosed drugs.


Assuntos
Neoplasias , Saponinas , Triterpenos , Endossomos/metabolismo , Humanos , Neoplasias/metabolismo , Proteínas Inativadoras de Ribossomos Tipo 2/química , Proteínas Inativadoras de Ribossomos Tipo 2/farmacologia , Saponinas/farmacologia , Triterpenos/farmacologia
4.
J Membr Biol ; 253(2): 139-152, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32002589

RESUMO

Endosomal escape is a rate-limiting step in the cytosolic delivery of therapeutic drugs. Overcoming this barrier is crucial to achieve an effective biological based therapy. In this work, we evaluated the ability of a synthetic biomimetic peptide derived from the GALA to facilitate endosomal escape of protein drugs. Our results showed that the cytoplasmic distribution of GALA fusion proteins changed according to the hydrophobicity of GALA. One of the synthetic peptides, GALA3, significantly enhanced the endosomal escape efficiency of protein drugs. The cytosolic delivery capacity of GALA3 was significantly higher than that of several previously reported endosomal escape peptides, including hemagglutinin 2 (HA2). Moreover, when GALA3 was fused to BLF1-HBP, a ribosome-inactivating protein with cell-penetrating peptide HBP, the cytotoxicity of the fusion protein was significantly increased in various cell lines, including H460, HeLa, A549, and SMCC-7721. The growth inhibition effect of GALA3-BLF1-HBP was at least 20 times greater than that of BLF1-HBP alone in different tumor cell lines. GALA3 effectively promoted the endosomal escape of BLF1-HBP in a pH-dependent manner and greatly enhanced the apoptotic activity of BLF1-HBP. Taken together, our data show that by adjusting the hydrophobicity of GALA we obtained a more effective endosomal escape peptide. Therefore, GALA3-fusions can improve the efficiency of therapeutic protein drugs.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Endossomos/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Peptídeos/química , Apoptose/genética , Sobrevivência Celular , Sistemas de Liberação de Medicamentos/métodos , Citometria de Fluxo , Hemólise , Humanos , Mutação , Peptídeos/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação
5.
Mol Pharm ; 17(2): 683-694, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31913047

RESUMO

Plant-based saponins are amphipathic glycosides composed of a hydrophobic aglycone backbone covalently bound to one or more hydrophilic sugar moieties. Recently, the endosomal escape activity of triterpenoid saponins has been investigated as a potentially powerful tool for improved cytosolic penetration of protein drugs internalized by endocytic uptake, thereby greatly enhancing their pharmacological effects. However, only a few saponins have been studied, and the paucity in understanding the structure-activity relationship of saponins imposes significant limitations on their applications. To address this knowledge gap, 12 triterpenoid saponins with diverse structural side chains were screened for their utility as endosomolytic agents. These compounds were used in combination with a toxin (MAP30-HBP) comprising a type I ribosome-inactivating protein fused to a cell-penetrating peptide. Suitability of saponins as endosomolytic agents was assessed on the basis of cytotoxicity, endosomal escape promotion, and synergistic effects on toxins. Five saponins showed strong endosomal escape activity, enhancing MAP30-HBP cytotoxicity by more than 106 to 109 folds. These saponins also enhanced the apoptotic effect of MAP30-HBP in a pH-dependent manner. Additionally, growth inhibition of MAP30-HBP-treated SMMC-7721 cells was greater than that of similarly treated HeLa cells, suggesting that saponin-mediated endosomolytic effect is likely to be cell-specific. Furthermore, the structural features and hydrophobicity of the sugar side chains were analyzed to draw correlations with endosomal escape activity and derive predictive rules, thus providing new insights into structure-activity relationships of saponins. This study revealed new saponins that can potentially be exploited as efficient cytosolic delivery reagents for improved therapeutic drug effects.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Endossomos/efeitos dos fármacos , Saponinas/química , Saponinas/farmacologia , Triterpenos/química , Triterpenos/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Sinergismo Farmacológico , Glicosilação , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Proteínas Inativadoras de Ribossomos Tipo 1/química , Proteínas Inativadoras de Ribossomos Tipo 1/farmacologia , Relação Estrutura-Atividade
6.
J Pept Sci ; 25(9): e3201, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31309656

RESUMO

Targeted delivery of antitumor drugs is especially important for tumor therapy. Cell-penetrating peptides (CPPs) have been shown to be very effective drug carriers for tumor therapy. However, most CPPs lack tumor cell specificity. Here, we identified a highly efficient CPP, CAT, from the newly identified buffalo-derived cathelicidin family, which exhibits a preferential binding capacity for multiple tumor cell lines and delivers carried drug molecules into cells. CAT showed an approximately threefold to sixfold higher translocation efficiency than some reported cell-penetrating antimicrobial peptides, including the well-known classical CPP TAT. Moreover, the delivery efficiency of CAT was greater in a variety of tested tumor cells than in normal cells, especially for the human hepatoma cell line SMMC-7721, for which delivery was 7 times more efficient than the normal human embryonic lung cell line MRC-5, according to fluorescent labeling experiment results. CAT was conjugated to the Momordica charantia-derived type-I ribosome-inactivating protein MAP 30, and the cytotoxicity of the MAP 30-CAT fusion protein in the tumor cell line SMMC-7721 was significantly enhanced compared with that of the unconjugated MAP 30. The IC50 value of MAP 30-CAT was approximately 83 times lower than the IC50 value of the original MAP 30. Interestingly, the IC50 value of MAP 30 alone for MRC-5 was approximately twofold higher than the value for SMMC-7721, showing a small difference. However, when MAP 30 was conjugated to CAT, the difference in IC50 values between the two cell lines was significantly increased by 38-fold. The results of the flow cytometric detection of apoptosis revealed that the increase in cytotoxicity after CAT conjugation was mainly caused by the increased induction of apoptosis by the fusion protein. These results suggest that CAT, as a novel tumor-homing CPP, has great potential in drug delivery applications in vivo and will be beneficial to the development of tumor therapeutics.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Antineoplásicos/farmacologia , Animais , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Búfalos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Portadores de Fármacos/química , Portadores de Fármacos/isolamento & purificação , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Relação Estrutura-Atividade , Catelicidinas
7.
Biotechnol Appl Biochem ; 64(6): 918-926, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28090686

RESUMO

Alpha-momorcharin (α-MMC), a type I ribosome-inactivating protein, has attracted a great deal of attention because of its antitumor activity. However, the cytotoxicity of α-MMC is limited due to insufficient cellular internalization in cancer cells. To enhance the cytotoxicity of α-MMC, a heparin-binding domain derived from heparin-binding epidermal growth factor (named heparin-binding peptide [HBP]) was used as a cell-penetrating peptide and fused to the C-terminus of α-MMC. This novel α-MMC-HBP fusion protein was expressed and purified with a Ni2+ -resin. The N-glycosidase activity and DNase activity assay indicated that the introduction of HBP did not interfere with the intrinsic bioactivities of α-MMC. HBP was able to efficiently carry α-MMC into the tested cancer cells and significantly enhance the cytotoxic effects of α-MMC in a dose-dependent manner. This enhanced cytotoxic ability occurred due to the higher level of cell apoptosis induced by α-MMC-HBP, which was demonstrated in western blot analysis in which α-MMC-HBP triggered caspase 8, caspase 9, casapase 3, and PARP more intensely than α-MMC alone. α-MMC-HBP led to an upregulation of cleaved PARP and an increase in the Bax/Bcl-2 ratio. Our study provided a new practical way to greatly improve the antitumor activity of α-MMC, which could significantly expand the pharmaceutical applications of α-MMC.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Sanguíneas/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Inativadoras de Ribossomos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Antineoplásicos Fitogênicos/metabolismo , Proteínas Sanguíneas/química , Proteínas de Transporte/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Células MCF-7 , Proteínas Inativadoras de Ribossomos/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
8.
Biotechnol Lett ; 39(1): 71-78, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27714558

RESUMO

OBJECTIVE: To evaluate the anti-tumor effects of trichosanthin after fusion with a cell penetrating peptide, heparin-binding peptide (HBP), derived from human heparin-binding EGF-like growth factor (HB-EGF). RESULTS: The fusion protein of trichosanthin-HBP was expressed in Escherichia coli BL21 and purified by Ni-NTA affinity chromatography. The HBP domain had no influence on the topological inactivation activity and N-glycosidase activity of trichosanthin. Trichosanthin-HBP significantly inhibited the growth of tested cancer cells which are impervious to trichosanthin. Tumor cell apoptosis and both the mitochondrial- and death receptor-mediated apoptotic signaling pathways induced by trichosanthin-HBP were more significant than those induced by trichosanthin in HeLa cells. CONCLUSION: HBP is an efficient intracellular delivery vehicle for trichosanthin and makes trichosanthin-HBP become a promising agent for cancer therapy.


Assuntos
Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Tricosantina/metabolismo , Tricosantina/farmacologia , Apoptose/efeitos dos fármacos , Células HeLa , Humanos , Peptídeos/genética , Proteínas Recombinantes de Fusão/genética , Tricosantina/genética
9.
J Pept Sci ; 22(11-12): 689-699, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27739168

RESUMO

Cell-penetrating peptides (CPPs) have been shown to be potential drug carriers for cancer therapy. The inherently low immunogenicity and cytotoxicity of human-derived CPPs make them more suitable for intracellular drug delivery compared to other delivery vehicles. In this work, the protein transduction ability of a novel CPP (termed HBP) derived from the heparin-binding domain of HB-EGF was evaluated. Our data shows, for the first time, that HBP possesses similar properties to typical CPPs and is a potent drug delivery vector for improving the antitumor activity of impermeable MAP30. The intrinsic bioactivities of recombinant MAP30-HBP were well preserved compared to those of free MAP30. Furthermore, HBP conjugated to the C-terminus of MAP30 promoted the cellular uptake of recombinant MAP30-HBP. Moreover, the fusion of HBP to MAP30 gave rise to significantly enhanced cytotoxic effects in all of the tumor cell lines tested. In HeLa cells, this cytotoxicity was mainly caused by the induction of cell apoptosis. Further investigation revealed that HBP enhanced MAP30-induced apoptosis through the activation of the mitochondrial- and death receptor-mediated signaling pathways. In addition, the MAP30-HBP fusion protein caused more HeLa cells to become arrested in S phase compared to MAP30 alone. These results highlight the MAP30-HBP fusion protein as a promising drug candidate for cancer therapy and demonstrate HBP, a novel CPP derived from human HB-EGF, as a new potential vector for antitumor drug delivery. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.


Assuntos
Peptídeos Penetradores de Células/farmacologia , Portadores de Fármacos/farmacologia , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Inativadoras de Ribossomos Tipo 2/farmacologia , Sequência de Aminoácidos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Peptídeos Penetradores de Células/biossíntese , Peptídeos Penetradores de Células/genética , Clonagem Molecular , Relação Dose-Resposta a Droga , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Células HeLa , Heparina/química , Heparina/metabolismo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/biossíntese , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Humanos , Momordica charantia/química , Ligação Proteica , Domínios Proteicos , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Inativadoras de Ribossomos Tipo 2/biossíntese , Proteínas Inativadoras de Ribossomos Tipo 2/genética , Fase S/efeitos dos fármacos , Transdução de Sinais
11.
Opt Express ; 22(1): 537-46, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24515014

RESUMO

We study the diffraction of optical waves by a single layer of gyromagnetic cylinders. We show that a nonvanishing rotating dipole momentum is excited in a single gyromagnetic cylinder because of the classic analog of the Zeeman effect on photonic angular momentum states (PAMSs). Consequently, different collective dipole modes are excited in a gyromagnetic cylinder array at opposite incident angles. Nonreciprocal optical diffraction effects can be observed, where the transmission and reflection coefficients depend on the sign of the incident angle. A novel phenomenon of nonreciprocal negative directional transmission is demonstrated and numerically analyzed. This work highlights the potential of PAMSs in manipulating the propagation of optical waves for various applications.

12.
Zhongguo Zhong Xi Yi Jie He Za Zhi ; 34(2): 209-13, 2014 Feb.
Artigo em Zh | MEDLINE | ID: mdl-24672947

RESUMO

OBJECTIVE: To observe the effect of single herb pilose antler (PA) on the expression of Smad2 and Smad3 in the cartilage of osteoarthritis (OA) rats. METHODS: One hundred 3-month old female healthy SD rats, (200 +/- 20) g, were recruited and routinely fed for 1 week. They were randomly divided into 5 groups, i.e., the low dose PA group, the high dose PA group, the normal saline control group, the model group, and the normal control group, 20 in each group. The model was prepared using classic Hulth method except the normal control group. After 6-week modeling, the model was confirmed successful by pathologic observation. PA at 0.021 g/100 g and 0.084 g/1 00 g was given by gastrogavage to rats in the low dose PA group and the high dose PA group respectively. Normal saline was administered to those in the normal saline control group. No treatment was given to rats in the normal control group and the model group. Bilateral knee cartilages were harvested at week 2,4, and 6. mRNA and protein expressions of Smad2 and Smad3 were detected by immunohistochemical assay, fluorescent quantitative PCR, and Western blot. RESULTS: OA model was successfully prepared by pathological observation. Results of immunohistochemical assay showed that Smad2 and Smad3 expressed extensively in the cartilage, and located inside the chondrocyte membrane. Compared with the model group, mRNA expression of Smad2 and Smad3 obviously increased in the low dose PA group and the high dose PA group at week 2, 4, and 6, showing statistical difference (P < 0.05). Compared with the same group at week 4 after gastrogavage, mRNA expression of Smad2 and Smad3 obviously decreased in the low dose PA group and the high dose PA group at week 6, showing statistical difference (P < 0.05). Compared with the model group, protein expression of Smad2 and Smad3 obviously increased in the chondrocytes of the low dose PA group and the high dose PA group at week 2 and 4, showing statistical difference (P < 0.01). Compared with the same group at week 2 after gastrogavage, protein expression of Smad2 and Smad3 obviously increased in the low dose PA group and the high dose PA group at week 4, showing statistical difference (P < 0.01). Compared with the same group at week 4 after gastrogavage, protein expression of Smad2 and Smad3 obviously decreased in the low dose PA group and the high dose PA group at week 6, showing statistical difference (P < 0.01). CONCLUSIONS: (1) The pilose antler could repair cartilages by regulating mRNA and protein expressions of Smad2 and Smad3. (2) Up-regulating mRNA and protein expressions of Smad2 and Smad3 might be one of important mechanisms for the pathogenesis of OA.


Assuntos
Chifres de Veado/química , Cartilagem/metabolismo , Condrócitos/metabolismo , Medicina Tradicional Chinesa , Osteoartrite/metabolismo , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Animais , Cartilagem/citologia , Condrócitos/efeitos dos fármacos , Feminino , Osteoartrite/tratamento farmacológico , Ratos , Ratos Sprague-Dawley
13.
Opt Express ; 21(11): 13368-79, 2013 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-23736588

RESUMO

Complex metamaterials with multiple optical resonances in constituent elements possess many similarities with open quantum systems that can be described by non-Hermitian Hamiltonian. By analogy with a two-state open quantum system, we show that a classic analogue of exceptional points can be observed in the transmission spectra of dual subwavelength metallic gratings. Anti-crossing (crossing) between the two branches λ(R) of extraordinary optical transmission, with crossing (anti-crossing) of the corresponding widths Γ(R), is observed in the parameter space spanned by the lateral displacement L and the angle of incidence φ0. Exchanges of field patterns and phases, and the variation of field profile when circling the exceptional point are discussed. This work highlights the potential to transfer the concepts and applications from open quantum systems to optical metamaterials.

14.
Toxicon ; 229: 107129, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37086901

RESUMO

Plant-derived triterpenoid saponins have been shown to play a powerful role in enhancing the cytotoxic activity of protein therapeutics. However, the mechanism of how saponins are acting is not clearly understood. In this study, momordin Ic (MIC), a triterpenoid saponin derived from Kochia scoparia (L.) Schrad., specifically enhance the antiproliferative effect of recombinant MAP30 (a type I ribosome inactivating protein, RIP) in breast cancer cells. Subsequently, the possible mechanism of how MIC enhanced the cytotoxicity of MAP30 was analyzed in detail. We observed the level of intracellular labeled MAP30 using fluorescence microscopy and flow cytometry. And a reporter protein, GAL9, was used to monitor the role of MIC in promoting endosomal escape. We found endosomal escape does not play a role for the enhancer effect of MIC while the effect of MIC on MAP30 is cholesterol dependent and that ganglioside GM1, a lipid raft marker, can competitively inhibit cytotoxicity of MAP30 enhanced by MIC. Finally, we provided some insights into the correlation between the sugar side chain of MIC and its role in enhancing of RIP cytotoxicity and altering of drug cell tropism.


Assuntos
Antineoplásicos , Saponinas , Triterpenos , Gangliosídeo G(M1)/farmacologia , Proteínas Recombinantes , Saponinas/farmacologia , Colesterol , Triterpenos/farmacologia , Proteínas Inativadoras de Ribossomos Tipo 2/farmacologia
15.
Chem Biol Drug Des ; 102(6): 1421-1434, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37620132

RESUMO

Targeted therapy has attracted more and more attention in cancer treatment in recent years. However, due to the diversity of tumor types and the mutation of target sites on the tumor surface, some existing targets are no longer suitable for tumor therapy. In addition, the long-term administration of a single targeted drug can also lead to drug resistance and attenuate drug potency, so it is important to develop new targets for tumor therapy. The expression of Type III transforming growth factor ß receptor (TGFBR3) is upregulated in colon, breast, and prostate cancer cells, and plays an important role in the occurrence and development of these cancers, so TGFBR3 may be developed as a novel target for tumor therapy, but so far there is no report on this research. In this study, the structure of bone morphogenetic protein 4 (BMP4), one of the ligands of TGFBR3 was analyzed through the docking analysis with TGFBR3 and sequence charge characteristic analysis, and a functional tumor-targeting penetrating peptide T3BP was identified. The results of fluorescent labeling experiments showed that T3BP could target and efficiently enter tumor cells with high expression of TGFBR3, especially A549 cells. When the expression of TGFBR3 on the surface of tumor cells (HeLa) was knocked down by RNA interference, the high delivery efficiency of T3BP was correspondingly reduced by 40%, indicating that the delivery was TGFBR3-dependent. Trichosanthin (TCS, a plant-derived ribosome inactivating protein) fused with T3BP can enhance the inhibitory activity of the fusion protein on A549 cells by more than 200 times that of TCS alone. These results indicated that T3BP, as a novel targeting peptide that can efficiently bind TGFBR3 and be used for targeted therapy of tumors with high expression of TGFBR3. This study enriches the supply of tumor-targeting peptides and provides a new potential application option for the treatment of tumors with high expression of TGFBR3.


Assuntos
Peptídeos Penetradores de Células , Masculino , Humanos , Peptídeos Penetradores de Células/química , Sistemas de Liberação de Medicamentos , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Proteoglicanas/genética , Proteoglicanas/metabolismo , Linhagem Celular Tumoral
16.
J Drug Target ; 31(5): 500-510, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36974745

RESUMO

Targeted delivery of antitumor drugs is particularly important in tumour treatment. Tumour-targeted peptide is a very effective drug carrier for tumour therapy. Here, we screened and characterised a highly efficient targeted peptide named IHP5, which was derived from insulin-like growth factor binding proteins (IGFBPs). IHP5 exhibited preferential binding to the tested tumour cell lines. The delivery efficiency of IHP5 was higher in various tested tumour cells than in normal cells, especially in the human cervical cancer cell line HeLa, which was 11.7-fold higher than in normal human embryonic kidney cells HEK293. Moreover, the penetration efficiency of IHP5 was 13 times higher than that of the classical cell penetrating peptide TAT in HeLa cells. Detail analysis revealed that IHP5 endocytosis was possibly correlated with acetylated heparan sulphate proteoglycans including phosphatidylinositol proteoglycan 3 (GPC3), phosphatidylinositol proteoglycan 5 (GPC5) and syndecan 2 (SDC2). Subsequently, the introduction of IHP5 enhanced the inhibitory effect of trichosanthin (TCS) on tumour cells, resulting in at least 19-fold increase in tumour cells without enhanced cytotoxicity in normal cells HEK293. These results suggested that IHP5, as a novel tumour cell-targeting penetrating peptide with the ability to target tumour cells, has great potential in drug delivery applications.


Assuntos
Peptídeos Penetradores de Células , Humanos , Células HeLa , Células HEK293 , Peptídeos Penetradores de Células/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina , Proteoglicanas/metabolismo , Glipicanas/metabolismo
17.
Chem Biol Interact ; 364: 110058, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35872048

RESUMO

Efficient endosomal escape after cellular uptake is a major challenge for the clinical application of therapeutic proteins. To overcome this obstacle, several strategies have been used to help protein drugs escape from endosomes without affecting the integrity of the cell membrane. Among them, some triterpenoid saponins with special structures were used to greatly enhance the anti-tumor therapeutic effect of protein toxins. Herein, we demonstrated that platycodin D (PD), polygalacin D (PGD) and platycodin D2 (PD2) from Platycodonis Radix significantly enhanced the ability of MHBP (a type I ribosome-inactivating protein toxin MAP30 fused with a cell-penetrating peptide HBP) to induce apoptosis in hepatoma cells. Based on the results of co-localization of endocytosed EGFP-HBP with a lysosomal probe and Galectin-9 vesicle membrane damage sensor, we demonstrated that PD, PGD and PD2 have the ability to promote endosomal escape of endocytic proteins without affecting the integrity of the plasma membrane. Meanwhile, we observed that cholesterol metabolism plays an important role in the activity of PD by RNA-seq analysis and KEGG pathway enrichment analysis, and confirm that PD, PGD and PD2 enhance the anti-tumor activity of MHBP by inducing the redistribution of free cholesterol and inhibiting the activity of cathepsin B and cathepsin D. Finally, we found that PD synergized with MHBP to induce caspase-dependent apoptosis through inhibiting Akt and ERK1/2 signaling pathways and activating JNK and p38 MAPK signaling pathways. This study provides new insights into the application of PD in cancer therapy and provides efficient and promising strategies for the cytosolic delivery of therapeutic proteins.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Saponinas , Triterpenos , Apoptose , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Endossomos/metabolismo , Endossomos/patologia , Humanos , Neoplasias Hepáticas/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Ribossômicas/metabolismo , Saponinas/química , Transdução de Sinais , Triterpenos/química
18.
World J Clin Cases ; 10(25): 9036-9043, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36157667

RESUMO

BACKGROUND: Ochronotic arthropathy (OcA) is a rare disease, which is caused by the accumulation of homogentisic acid in the joint. Patients with OcA have obvious joint pain and the disease progresses rapidly, eventually resulting in disability. Arthroplasty is an efficacious treatment in patients with OcA. However, when OcA patients have joint infection, is joint replacement an option? In the present report, we performed total knee arthroplasty in a patient with OcA and knee infection under the guidance of one-stage revision theory. CASE SUMMARY: A 64-year-old male was referred to our hospital due to severe left knee pain with limited mobility for 2 years. On physical examination, the patient was found to have dark brown pigmentation of the sclera and auricle. Laboratory test results showed elevations in C-reactive protein level (65.79 mg/L) and erythrocyte sedimentation rate (90.00 mm/h). The patient underwent debridement of the left knee joint, during which the cartilage surface of the knee joint was found to be black-brown in color. Bacterial culture of synovial fluid revealed Achromobacter xylosoxidans. We then carried out arthroplasty under the guidance of the theory of one-stage revision. After surgery, the patient's left knee joint pain disappeared and function recovered without joint infection. CONCLUSION: OcA accompanied by joint infection is rare. One-stage revision arthroplasty may be a treatment option for this disease.

19.
Guang Pu Xue Yu Guang Pu Fen Xi ; 31(4): 955-9, 2011 Apr.
Artigo em Zh | MEDLINE | ID: mdl-21714237

RESUMO

Near-infrared (NIR) and mid-infrared (MIR) diffuse reflection spectra were compared and evaluated for hydrocarbon potential generation of source rocks. Near-infrared diffuse reflectance often exhibits significant differences in the spectra due to the non-homogeneous distribution of the particles, so the signal-to-noise ratio of NIR is much lower than MIR It is too difficult to get accurate results by NIR without using a strong spectral preprocessing method to remove systematic noise such as base-line variation and multiplicative scatter effects. In the present paper, orthogonal signal correction (OSC) and an improved algorithm of it, i.e. direct orthogonal signal correction (DOSC), are used as different methods to preprocess both the NIR and MIR spectra of the hydrocarbon source rocks. Another algorithm, wavelet multi-scale direct orthogonal signal correction (WMDOSC), which is a combination of discrete wavelet transform (DWT) and DOSC, is also used as a preprocessing method. Then, the calibration model of hydrocarbon source rocks before and after pretreatment was established by interval partial least square (iPLS). The experimental results show that WMDOSC is more successfully applied to preprocess the NIR spectra data of the hydrocarbon source rocks than other two algorithms, and NIR performed as good as MIR in the analysis of hydrocarbon potential generation of source rocks with WMDOSC-iPLS pretreatment calibration model.

20.
Research (Wash D C) ; 2021: 5490482, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33644763

RESUMO

Stimulus-responsive metal-organic frameworks (MOFs) can be used for designing smart materials. Herein, we report a family of rationally designed MOFs which exhibit photoresponsive chiroptical and magnetic properties at room temperature. In this design, two specific nonphotochromic ligands are selected to construct enantiomeric MOFs, {Cu2(L-mal)2(bpy)2(H2O)·3H2O}n (1) and {Cu2(D-mal)2(bpy)2(H2O)·3H2O}n (2) (mal = malate, bpy = 4, 4' - bipyridine), which can alter their color, magnetism, and chiroptics concurrently in response to light. Upon UV or visible light irradiation, long-lived bpy- radicals are generated via photoinduced electron transfer (PET) from oxygen atoms of carboxylates and hydroxyl of malates to bpy ligands, giving rise to a 23.7% increase of magnetic susceptibility at room temperature. The participation of the chromophores (-OH and -COO-) bound with the chiral carbon during the electron transfer process results in a small dipolar transition; thus, the Cotton effects of the enantiomers are weakened along with a photoinduced color change. This work demonstrates that the simultaneous responses of chirality, optics, and magnetism can be achieved in a single compound at room temperature and may open up a new pathway for designing chiral stimuli-responsive materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA