RESUMO
Myocardial fibrosis (MF) is the characteristic pathological feature of various cardiovascular diseases that lead to heart failure (HF) or even fatal outcomes. Alternatively, activated macrophages are involved in the development of fibrosis and tissue remodeling. Although the receptor for advanced glycation end products (RAGE) is involved in MF, its potential role in regulating macrophage function in cardiac fibrosis has not been fully investigated. We aimed to determine the role of macrophage RAGE in transverse aortic constriction (TAC)-induced MF. In this study, we found that RAGE expression was markedly increased in the infiltrated alternatively activated macrophages within mice hearts after TAC. RAGE knockout mice showed less infiltration of alternatively activated macrophages and attenuated cardiac hypertrophy and fibrosis compared to the wild-type mice. Our data suggest that mice with macrophage-specific genetic deletion of RAGE were protected from interstitial fibrosis and cardiac dysfunction when subjected to pressure overload, which led to a decreased proportion of alternatively activated macrophages in heart tissues. Our in vitro experiments demonstrated that RAGE deficiency inhibited the differentiation into alternatively activated macrophages by suppressing autophagy activation. In the co-culture system, in vitro polarization of RAW264.7 macrophages toward an alternatively activated phenotype stimulated the expression of α-smooth muscle actin and collagen in cardiac fibroblasts. However, the knockdown of RAGE and inhibition of autophagy in macrophages showed reduced fibroblast-to-myofibroblast transition (FMT). Collectively, our results suggest that RAGE plays an important role in the recruitment and activation of alternatively activated macrophages by regulating autophagy, which contributes to MF. Thus, blockage of RAGE signaling may be an attractive therapeutic target for the treatment of hypertensive heart disease.
Assuntos
Cardiopatias , Insuficiência Cardíaca , Animais , Camundongos , Autofagia , Fibrose , Cardiopatias/metabolismo , Insuficiência Cardíaca/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismoRESUMO
Despite recent advances in generating high-quality reference genome assemblies, the genome sequences for most livestock species, including goats, are still poorly annotated. Single-molecule long-read sequencing has greatly facilitated gene annotation by obtaining full-length transcripts. In this study, we generated full-length transcriptome data for samples from abomasum (n = 2) and testicle (n = 1), using PacBio Iso-Seq technology. We further combined these data with published data from abomasum (5ZY, SRR8618141) to evaluate and improve the gene annotation of the goat genome. We identified 14.5-16.3% of novel genes per sample from the four Iso-Seq datasets. At the transcript level, 40.6% of them were novel, including 29.7% novel transcripts from known genes and 10.9% from novel genes. We further verified the expression of novel genes in four additional RNA-seq data and found that the expression level of novel genes was significantly lower than that of known genes, indicating that the lowly expressed genes tend to be missed in the current genome annotation. This study shows the superiority of full-length transcriptome data in gene annotation, and more such data are required to improve the gene annotation for goat genome and other species.
Assuntos
Cabras , Transcriptoma , Animais , Cabras/genética , Genoma , Anotação de Sequência Molecular , RNA-Seq , Sequenciamento de Nucleotídeos em Larga Escala , Perfilação da Expressão Gênica/veterináriaRESUMO
With the advent of global climate change, heat-tolerance is becoming more and more important to the sustainability of animal husbandry production systems. Previous studies have shown that MYO1A gene associated with pigmentation may be closely related to heat-tolerance in cattle. In this study, a novel missense mutation (NC_037332.1 g.56390345 A > G) was first detected in MYO1A in 891 individuals of 35 cattle breeds, which transformed the amino acid isoleucine into valine. The purpose of this study was to determine the allele frequencies distribution of this locus in Chinese indigenous cattle and to analyze the relationship between this locus and heat-tolerance. Further analysis showed that frequency of wild allele A decreased gradually from northern cattle to southern cattle, whereas frequency of mutant type allele G showed the opposite pattern, which was consistent with the distribution of various climatic conditions of China. Additionally, association analysis was carried out between genotypes and four climatic conditions (annual mean temperature (T), relative humidity (H), temperature-humidity index (THI) and average annual sunshine hours (100-cloudiness) (SR)). Analysis results showed that genotypes were significantly correlated with climatic conditions. Therefore, our results suggest that the novel SNP (rs209559414) is related to heat-tolerance trait of Chinese indigenous cattle.
Assuntos
Temperatura Alta , Isoleucina , Animais , Bovinos/genética , Genótipo , Umidade , ValinaAssuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Células Endoteliais , Hipertensão Pulmonar , Receptor Notch4 , Transdução de Sinais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Animais , Humanos , Receptor Notch4/metabolismo , Receptor Notch4/genética , Reprogramação Celular , Capilares/metabolismo , Capilares/patologia , Camundongos , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/citologiaRESUMO
BACKGROUND: Fuzhong buffalo, a native breed of Guangxi Zhuang Autonomous Region, is traditionally used as a draft animal to provide farm power in the rice cultivation. In addition, the Fuzhong buffalo also prepared for the bullfighting festival organized by the locals. The detection of the selective signatures in its genome can help in elucidating the selection mechanisms in its stamina and muscle development of a draft animal. RESULTS: In this study, we analyzed 27 whole genomes of buffalo (including 15 Fuzhong buffalo genomes and 12 published buffalo genomes from Upper Yangtze region). The ZHp, ZFst, π-Ratio, and XP-EHH statistics were used to identify the candidate signatures of positive selection in Fuzhong buffalo. Our results detected a set of candidate genes involving in the pathways and GO terms associated with the response to exercise (e.g., ALDOA, STAT3, AKT2, EIF4E2, CACNA2D2, TCF4, CDH2), immunity (e.g., PTPN22, NKX2-3, PIK3R1, ITK, TMEM173), nervous system (e.g., PTPN21, ROBO1, HOMER1, MAGI2, SLC1A3, NRG3, SNAP47, CTNNA2, ADGRL3). In addition, we also identified several genes related to production and growth traits (e.g., PHLPP1, PRKN, MACF1, UCN3, RALGAPA1, PHKB, PKD1L). Our results depicted several pathways, GO terms, and candidate genes to be associated with response to exercise, immunity, nervous system, and growth traits. CONCLUSIONS: The selective sweep analysis of the Fuzhong buffalo demonstrated positive selection pressure on potential target genes involved in behavior, immunity, and growth traits, etc. Our findings provided a valuable resource for future research on buffalo breeding and an insight into the mechanisms of artificial selection.
Assuntos
Búfalos/genética , Locos de Características Quantitativas , Seleção Artificial , Animais , Seleção Genética , Sequenciamento Completo do GenomaRESUMO
This study investigated the effect of replacing corn grain, soybean meal and wheat bran with tropical agricultural by-products, such as palm kernel cake (PKC), cassava residue and dried distiller's grain with solubles (DDGS), on the dry matter intake (DMI), growth performance, apparent nutrient digestibility, ruminal short-chain fatty acids (SCFA) and ruminal microbial communities of water buffaloes. Thirty healthy 15-month-old crossbred water buffaloes with a similar initial body weight of 353.1 ± 23.7 kg were randomly allocated into three dietary experimental groups, and they were fed with same forage but three different concentrates for 50 days fattening. The dietary treatments were as following: typical concentrate (TC, 65% corn + 15% wheat bran + 15% soybean meal), partial replacement concentrate â (PRC I, 50% corn + 22.5% corn gluten + 22.5% PKC) and partial replacement concentrate â ¡ (PRC II, 50% corn + 22.5% cassava residue + 22.5% DDGS). The results showed that the average daily gain of the PRC II group was the highest, and the DMI, acid detergent fibre digestibility and neutral detergent fibre digestibility value of the three groups were different and in the following order: PRC II group > TC group > PRC I group. The crude protein digestibility of PRC II was higher than that of the TC and PRC I groups (p < .05). The ruminal concentrations of total SCFA, acetate, propionate and butyrate of TC group were higher than the other two groups (p < .05). The PRC I group had the highest Bacteroidetes-to-Firmicutes ratio (B/F) and relative abundance of the genus Prevotella, while the PRC II group had the lowest B/F and relative abundance of Prevotella. In conclusion, using PKC and corn gluten to completely replace common feed ingredients in the buffalo concentrate ration decreased, while using cassava residue and DDGS increased animal growth performance, mainly due to the different combination influenced nutrient digestibility and ruminal microbial community composition was shifted.
Assuntos
Agricultura , Ração Animal/análise , Búfalos/crescimento & desenvolvimento , Dieta/veterinária , Clima Tropical , Fenômenos Fisiológicos da Nutrição Animal , Animais , Búfalos/fisiologia , Fibras na Dieta , Digestão , Glutens , Masculino , Manihot , Rúmen/microbiologia , Glycine max , Zea maysRESUMO
This study aimed to elucidate the effects of repeated pregnant mare serum gonadotropin (PMSG) treatment for oestrous synchronization (ES) on ovarian gene expression and reproductive parameters in Xinong Saanen dairy goats, the dominant breed of dairy goat in China. The experiment was carried out at the Research Station of Northwest A&F University (NWAFU), China (34°16'N, 108°4'E). Forty-one does were randomly assigned to groups receiving ES treatments thrice every fortnight (3-PMSG group; n = 19), or ES treatment only once simultaneously with the third ES treatment in the 3-PMSG group (1-PMSG group; n = 22) during middle of the breeding season from late July (14 hr light) until late September (12 hr light). ES treatment was performed via intravaginal insertion of a controlled internal drug release (CIDR) device impregnated with 300 mg progesterone (P4), followed by 300 IU PMSG injections 48 hr before CIDR withdrawal. Oestrus was monitored using vasectomized bucks. Ovaries of three goats in oestrus from both groups were harvested for morphological examination and RNA sequencing (RNA-Seq). Then, all the oestrous goats in the 1-PMSG (n = 21) and 3-PMSG (n = 11) groups were artificially inseminated twice. The 3-PMSG group showed reduced oestrous rate (57.89%), pregnancy rate (31.58%) and litter size (1.17) compared, respectively, with 95.45%, 68.18% and 1.67 for 1-PMSG group (p < 0.05). However, no differences were found in the ovarian morphology between the 1-PMSG and 3-PMSG groups (p > 0.05). RNA-Seq revealed 114 differentially expressed genes (DEGs) in the ovaries of the 3-PMSG group, among which GCG, FSTL3, TET3 and AQP3 were deemed novel and promising candidate genes for regulating fertility. The present study indicates that the three-time PMSG treatment dysregulated several ovarian genes, thereby reducing reproductive performance.
Assuntos
Sincronização do Estro/efeitos dos fármacos , Fertilidade/efeitos dos fármacos , Ovário/efeitos dos fármacos , Administração Intravaginal , Animais , Feminino , Expressão Gênica , Cabras , Gonadotropinas Equinas/administração & dosagem , Tamanho da Ninhada de Vivíparos/efeitos dos fármacos , Masculino , Ovário/metabolismo , Gravidez , Taxa de Gravidez , Progesterona/administração & dosagem , Distribuição AleatóriaRESUMO
BACKGROUND: The mouse strain BALB/c deficient in IL-1 receptor antagonist protein (Il-1ra) develops spontaneous arthritis disease (SAD) while the strain DBA/1 IL1rn (-/-) with the same deficiency does not. Previously, we mapped a QTL on chromosome 1 for SAD and then developed a congenic mouse strain BALB.D1-1(-/-) that contains the QTL genomic fragment associated with resistance from DBA/1(-/-) on a BALB/c(-/-) background. The congenic strain was relatively resistant to spontaneous arthritis and had delayed onset and reduced severity of disease. We obtained whole genome expression profiles from the spleen of the congenic strain BALB.D1-1(-/-) and four other strains, the wild type BALB/c, DBA/1 and the deficient DBA/1 IL1rn (-/-) and the BALB/c IL1rn (-/-). We then compared the similarities and differences between the congenic strain and the four parental strains. Here we report the selected potential causal genes based on differential expression levels as well as function of genes. RESULTS: There is a considerable number of genes that are differentially expressed between the congenic strain and the three parental strains, BALB/c, DBA/1, and DBA/1(-/-). However there only a few differentially expressed genes were identified by comparing the congenic strain and the BALB/c(-/-)strain. These differentially expressed genes are mainly from T-cell receptor beta chain (Tcrb) and interferon-activatable protein (Ifi) genes. These genes are also differentially expressed between congenic strain and BALB/c strains. However, their expression levels in the congenic strain are similar to that in DBA/1 and DBA/1(-/-). The expression level of Tcrb-j gene is positively associated with two genes of Ifi gene 200 cluster. CONCLUSIONS: Decreased expression levels of Ifi genes is associated to the increased resistance to spontaneous arthritis disease and with down regulation of expressions of Tcrb genes in the mouse congenic strain. Ifi genes may play an important role in the susceptibility to SAD in mice.
Assuntos
Artrite/genética , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T/genética , Proteína Antagonista do Receptor de Interleucina 1/genética , Proteínas Nucleares/genética , Fenótipo , Animais , Simulação por Computador , Feminino , Perfilação da Expressão Gênica , Patrimônio Genético , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos DBA , Camundongos Mutantes , Análise em Microsséries , Mutação/genética , Especificidade da EspécieRESUMO
Specificity protein 1 (SP1) is a ubiquitous transcription factor that plays an important role in controlling gene expression. Although important in mediating the function of various hormones, the role of SP1 in regulating milk fat formation remains unknown. To investigate the sequence and expression information, as well as its role in modulating lipid metabolism, we cloned SP1 gene from mammary gland of Xinong Saanen dairy goat. The full-length cDNA of the SP1 gene is 4376 bp including 103 bp of 5'UTR, 2358 bp of ORF (HM_236311) and 1915 bp of 3'UTR, which is predicted to encode a 786 amino acids polypeptide. Phylogenetic tree analysis showed that goat SP1 has the closest relationship with sheep, followed by bovines (bos taurus, odobenus and ceratotherium), pig, primates (pongo, gorilla, macaca and papio) and murine (rattus and mus), while the furthest relationship was with canis and otolemur. Expression was predominant in the lungs, small intestine, muscle, spleen, mammary gland and subcutaneous fat. There were no significant expression level differences between the mammary gland tissues collected at lactation and dry-off period. Overexpression of SP1 in goat mammary epithelial cells (GMECs) led to higher mRNA expression level of peroxisome proliferator-activated receptor-γ (PPARγ) and lower liver X receptor α (LXRα) mRNA level, both of which were crucial in regulating fatty acid metabolism, and correspondingly altered the expression of their downstream genes in GMECs. These results were further enhanced by the silencing of SP1. These findings suggest that SP1 may play an important role in fatty acid metabolism.
Assuntos
Células Epiteliais/metabolismo , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica , Cabras/metabolismo , Glândulas Mamárias Humanas/metabolismo , Fator de Transcrição Sp1/metabolismo , Animais , DNA Complementar/genética , Ácidos Graxos/genética , Feminino , Cabras/genética , Humanos , Receptores X do Fígado , Glândulas Mamárias Humanas/citologia , Modelos Moleculares , Receptores Nucleares Órfãos/genética , PPAR gama/genética , Filogenia , Fator de Transcrição Sp1/química , Fator de Transcrição Sp1/genéticaRESUMO
BACKGROUND: To understand the role of genetic factors on chromosome 1 in the regulation of spontaneous arthritis in mice deficient in IL-1 receptor antagonist protein (IL_1RA), we previously used speed congenic breeding to transfer the QTL region from DBA/1(-/-) mice that are resistant to spontaneous arthritis into BALB/c(-/-) mice which are susceptible. We were able to establish two congenic strains which exhibited a delayed onset and reduced severity of disease. In this study, we asked a different set of questions. How will the QTL region from BALB/c(-/-) interact with the rest of the genome in the DBA/1(-/-) background? Will the DBA/1(-/-) mice become susceptible to spontaneous arthritis if the QTL genomic region on chromosome 1 was replaced with the genomic fragment of the same region from BALB/c(-/-)? We conducted the congenic breeding with the similar procedure as that of congenic strains with BALB/c(-/-) background. RESULT: Instead of BALB/c(-/-), DBA/1(-/-) was used as the recurrent parent while BALB/c(-/-) was used as the donor parent. By the 6(th) generation we determined that all of the chromosomes in the progeny were of DBA/1(-/-) origin with the exception of the QTL portion of chromosome 1 which is heterozygous of BALB/c(-/-) and DBA/1(-/-) origin. We then intercrossed selected mice to produce homozygous strains containing the homozygous genomic region of BALB/c(-/-) on chromosome 1, while the rest of genome are homozygous DBA/1(-/-). This strain was observed for the development of spontaneous arthritis. Up to 9 weeks of age, both congenic strain and DBA/1(-/-) did not develop arthritis. However, after 9 weeks, the congenic strain started to exhibit signs of arthritis, while the DBA/1(-/-) remained free from disease. CONCLUSION: The result indicates a strong influence of genetic factor(s) on the QTL of chromosome 1 on the susceptibility to spontaneous arthritis. Identification of genetic factors within this QTL region in the future will significantly enhance our understanding of molecular mechanism of spontaneous arthritis.
Assuntos
Artrite/genética , Cromossomos de Mamíferos/genética , Locos de Características Quantitativas , Animais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos DBA , Camundongos KnockoutAssuntos
Haplótipos/genética , Cromossomo Y/genética , Animais , Bovinos , China , Humanos , MasculinoRESUMO
Black goats are a significant meat breed in southern China. To investigate the expression patterns and biological functions of genes in various tissues of black goats, we analyzed housekeeping genes (HKGs), tissue-specific genes (TSGs), and hub genes (HUBGs) across 23 tissues. Additionally, we analyzed HKGs in 13 tissues under different feeding conditions. We identified 2968 HKGs, including six important ones. Interestingly, HKGs in grazing black goats demonstrated higher and more stable expression levels. We discovered a total of 9912 TSGs, including 134 newly identified ones. The number of TSGs for mRNA and lncRNA were nearly equal, with 127 mRNA TSGs expressed solely in one tissue. Additionally, the predicted functions of tissue-specific long non-coding RNAs (lncRNAs) targeting mRNAs corresponded with the physiological functions of the tissues.Weighted gene co-expression network analysis (WGCNA) constructed 30 modules, where the dark grey module consists almost entirely of HKGs, and TSGs are located in modules most correlated with their respective tissues. Additionally, we identified 289 HUBGs, which are involved in regulating the physiological functions of their respective tissues. Overall, these identified HKGs, TSGs, and HUBGs provide a foundation for studying the molecular mechanisms affecting the genetic and biological processes of complex traits in black goats.
Assuntos
Genes Essenciais , Cabras , Especificidade de Órgãos , Animais , Cabras/genética , Especificidade de Órgãos/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Longo não Codificante/genética , Regulação da Expressão GênicaRESUMO
Atherosclerosis is characterised by lipid accumulation and formation of foam cells in arterial walls. Dysregulated autophagy is a crucial factor in atherosclerosis development. The significance of microRNA (miR)-125b-1-3p in cardiovascular disease is well-established; however, its precise role in regulating autophagy and impact on atherosclerosis in vascular smooth muscle cells (VSMCs) remain unclear. Here, we observed reduced autophagic activity and decreased miR-125b expression during atherosclerosis progression. miR-125b-1-3p overexpression significantly reduced atherosclerotic plaque development in mice; it also led to decreased lipid uptake and deposition in VSMCs, enhanced autophagy, and suppression of smooth muscle cell phenotypic changes in-vitro. An interaction between miR-125b-1-3p and the RRAGD/mTOR/ULK1 pathway was revealed, elucidating its role in promoting autophagy. Therefore, miR-125b-1-3p plays a pivotal role in enhancing autophagic processes, inhibiting foam cell formation in VSMCs and mitigating atherosclerosis progression, partly through RRAGD/mTOR/ULK1 signaling axis modulation. Thus, miR-125b-1-3p is a promising target for preventive and therapeutic strategies for atherosclerosis.
Assuntos
Aterosclerose , MicroRNAs , Animais , Camundongos , Aterosclerose/genética , Aterosclerose/metabolismo , Autofagia/genética , Proliferação de Células/fisiologia , Lipídeos , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos de Músculo Liso/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismoRESUMO
Pulmonary arterial hypertension (PAH) is characterized by a progressive increase of pulmonary vascular resistance and obliterative pulmonary vascular remodeling that result in right heart hypertrophy, failure, and premature death. The underlying mechanisms of loss of distal capillary endothelial cells (ECs) and obliterative vascular lesion formation remain unclear. Our recent single-cell RNA sequencing, spatial transcriptomics analysis, RNASCOPE, and immunostaining analysis showed that arterial ECs accumulation and loss of capillary ECs were evident in human PAH patients and pulmonary hypertension (PH) rodents. Pseudotime trajectory analysis of the single-cell RNA sequencing data suggest that lung capillary ECs transit to arterial ECs during the development of PH. Our study also identified CXCL12 as the marker for arterial ECs in PH. Capillary EC lineage tracing approach using capillary specific-Dre;Tdtomato reporter mice demonstrated that capillary ECs gave rise to arterial ECs during PH development. Genetic deletion of HIF-2a or pharmacological inhibition of Notch4 normalized the arterial programming in PH. In conclusion, our study demonstrates that capillary endothelium transits to arterial endothelium through the HIF-2a-Notch4 pathway during the development of PAH. Thus, targeting arterial EC transition might be a novel approach for treating PAH patients.
RESUMO
BACKGROUND: Non-small cell lung cancer (NSCLC) is a highly aggressive type of lung cancer with poor responses to traditional therapies such as surgery, radiotherapy, and chemotherapy. While immunotherapy has become an effective approach for treating multiple types of cancer, solid tumors frequently exhibit immune escape through various mechanisms, including downregulation of MHC I expression. However, whether the upregulation of MHC I expression can improve the immunotherapeutic effect on NSCLC remains unexplored. Suberoylanilide hydroxamic acid (SAHA) is a potent histone deacetylase (HDAC) inhibitor that has been applied clinically to treat lymphoma, but a high dose of SAHA kills tumor cells and normal cells without preference. Here, we report that low-dose SAHA enhances CD8+ T cell-mediated antitumor immunity by upregulating MHC I expression in NSCLC cells. METHODS: Flow cytometric analysis, quantitative real-time PCR and western blot were used to analyze the expression of MHC I, STAT1 and Smad2/3 in both human and mouse NSCLC cell lines after SAHA treatment. The nuclear translocation of phosphorylated STAT1 and Smad2/3 was investigated by western blot and immunofluorescence staining. The mechanisms underlying STAT1 and Smad2/3 upregulation were analyzed through database searches and chromatin immunoprecipitation-qPCR. Finally, we assessed the antitumor effect of specific CD8+ T cells with SAHA treatment in vivo and in vitro. RESULTS: We showed that low-dose SAHA upregulated the expression of MHC I in NSCLC cell lines without affecting cell viability. We also provided evidence that high levels of MHC I induced by SAHA promoted the activation, proliferation, and cytotoxicity of specific CD8+ T cells in mouse models. Mechanistically, low-dose SAHA increased the levels of H3K9ac and H3K27ac in the promoters of the STAT1, Smad2 and Smad3 genes in NSCLC cells by inhibiting HDAC activity, resulting in elevated expression levels of STAT1, Smad2 and Smad3. The nuclear translocation of phosphorylated STAT1 and Smad2/3 markedly upregulated the expression of MHC I in NSCLC cells. CONCLUSIONS: Low-dose SAHA enhances CD8+ T cell-mediated antitumor immunity by boosting MHC I expression in NSCLC cells. Thus, we revealed a key mechanism of SAHA-mediated enhanced antitumor immunity, providing insights into a novel immunotherapy strategy for NSCLC.
RESUMO
What is already known about this topic?: Kashin-Beck disease (KBD) is a chronic and degenerative osteoarthropathy characterized by cartilage degeneration. It is an endemic disease that is highly prevalent among the Chinese population and poses a significant health risk. What is added by this report?: This is the first national report on the economic burden of KBD in China. According to the data from 2021, KBD has caused significant disease and economic burdens. The most substantial reduction in healthy life expectancy was observed among patients with degree II severity and those aged 60 years and older, resulting in a total indirect economic burden of 112.74 million Chinese Yuan (CNY). What are the implications for public health practice?: The results of this study will contribute to informing the development of tailored prevention and control strategies by the government. These strategies will include targeted policies and recommendations for appropriate healthcare and financial subsidies, which will be based on the demographic characteristics of the endemic areas.
RESUMO
When IL-1 receptor antagonist (IL-1rn) is knocked out, mice have shown strain background dependent and major QTL regulated susceptibility to spontaneously inflammatory arthritis disease (SAD). The impact on bone properties resulting from the interactions of IL-1rn, genomic background strains, and the QTL locus, is unknown. Bone properties in the four specifically bred mouse strains with mutation of IL-1rn and variations in genomic components were investigated with high-resolution MicroCT and genomic analytical tools. Two congenic mouse strains were also measured to evaluate the influence on bone properties by a QTL in the region in chromosome 1. Our results reveal that several bone phenotypes, including bone mineral density (BMD), bone volume, tibial length, and cortical thickness of the tibia are different between wild type and IL-1rn knockout mice in both Balb/c and DBA/1 backgrounds, but IL-1rn knockout affects BMD differently between the two mouse strains. The absence of IL-1rn decreases BMD in Balb/c mice but increases BMD in DBA/1-/- mice compared to their respective wild type counterparts. A QTL transferred from the Balb/c genetic background which affects arthritis in congenic strains appears to also regulate BMD. While several genes, including Ctsg and Prg2, may affect BMD, Ifi202b is the most favored candidate gene for regulating BMD as well as SAD. In conclusion, the previously mentioned bone phenotypes are each influenced in different ways by the loss of IL-1ra when considered in mice from varying genomic backgrounds.
Assuntos
Densidade Óssea , Proteína Antagonista do Receptor de Interleucina 1 , Camundongos Knockout , Locos de Características Quantitativas , Animais , Camundongos , Densidade Óssea/genética , Proteína Antagonista do Receptor de Interleucina 1/genética , Proteína Antagonista do Receptor de Interleucina 1/deficiência , Camundongos Endogâmicos BALB C , Osso e Ossos/metabolismo , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Camundongos Endogâmicos DBA , Masculino , Fenótipo , Microtomografia por Raio-X , Doenças Hereditárias AutoinflamatóriasRESUMO
Pulmonary arterial hypertension (PAH) is a devastating disease characterized by obliterative vascular remodeling and persistent increase of vascular resistance, leading to right heart failure and premature death. Understanding the cellular and molecular mechanisms will help develop novel therapeutic approaches for PAH patients. Single-cell RNA sequencing (scRNAseq) analysis found that both FABP4 and FABP5 were highly induced in endothelial cells (ECs) of Egln1Tie2Cre (CKO) mice, which was also observed in pulmonary arterial ECs (PAECs) from idiopathic PAH (IPAH) patients, and in whole lungs of pulmonary hypertension (PH) rats. Plasma levels of FABP4/5 were upregulated in IPAH patients and directly correlated with severity of hemodynamics and biochemical parameters using plasma proteome analysis. Genetic deletion of both Fabp4 and 5 in CKO mice (Egln1Tie2Cre/Fabp4-5-/- ,TKO) caused a reduction of right ventricular systolic pressure (RVSP) and RV hypertrophy, attenuated pulmonary vascular remodeling and prevented the right heart failure assessed by echocardiography, hemodynamic and histological analysis. Employing bulk RNA-seq and scRNA-seq, and spatial transcriptomic analysis, we showed that Fabp4/5 deletion also inhibited EC glycolysis and distal arterial programming, reduced ROS and HIF-2α expression in PH lungs. Thus, PH causes aberrant expression of FABP4/5 in pulmonary ECs which leads to enhanced ECs glycolysis and distal arterial programming, contributing to the accumulation of arterial ECs and vascular remodeling and exacerbating the disease.
RESUMO
The purpose of this study is to investigate whether expression profiles of alcoholism-relevant genes in different parts of the brain are correlated differently with those in the liver. Four experiments were conducted. First, we used gene expression profiles from five parts of the brain (striatum, prefrontal cortex, nucleus accumbens, hippocampus, and cerebellum) and from liver in a population of recombinant inbred mouse strains to examine the expression association of 10 alcoholism-relevant genes. Second, we conducted the same association analysis between brain structures and the lung. Third, using five randomly selected, nonalcoholism-relevant genes, we conducted the association analysis between brain and liver. Finally, we compared the expression of 10 alcoholism-relevant genes in hippocampus and cerebellum between an alcohol preference strain and a wild-type control. We observed a difference in correlation patterns in expression levels of 10 alcoholism-relevant genes between different parts of the brain with those of liver. We then examined the association of gene expression between alcohol dehydrogenases (Adh1, Adh2, Adh5, and Adh7) and different parts of the brain. The results were similar to those of the 10 genes. Then, we found that the association of those genes between brain structures and lung was different from that of liver. Next, we found that the association patterns of five alcoholism-nonrelevant genes were different from those of 10 alcoholism-relevant genes. Finally, we found that the expression level of 10 alcohol-relevant genes is influenced more in hippocampus than in cerebellum in the alcohol preference strain. Our results show that the expression of alcoholism-relevant genes in liver is differently associated with the expression of genes in different parts of the brain. Because different structural changes in different parts of the brain in alcoholism have been reported, it is important to investigate whether those structural differences in the brains of those with alcoholism are due to the difference in the associations of gene expression between genes in liver and in different parts of the brain.
Assuntos
Alcoolismo/genética , Encéfalo/metabolismo , Perfilação da Expressão Gênica , Fígado/metabolismo , HumanosRESUMO
BACKGROUND: The Chinese herbal compound Xinmaikang (XMK) is effective in treating atherosclerosis (AS), although the associated mechanisms of action remain unclear. We hypothesize that XMK increases mitophagy via the PINK1/Parkin signaling pathway and decreases reactive oxygen species (ROS), thus treating AS. PURPOSE: To explore the above-mentioned mechanisms of action of XMK in AS. MATERIALS AND METHODS: Ultra-performance liquid chromatography assay was performed to clarify the composition of XMK. A 16-week high-fat diet was fed to APOE-/- mice to form an AS model. Next, mice were given XMK(0.95 g/kg/d, 1.99 g/kg/d, 3.98 g/kg/d, i.g.) or Atorvastatin(3 mg/kg/d, i.g.) or Rapamycin(4 mg/kg/d, i.p.) or XMK with Mdivi-1(40 mg/kg/d, i.p.) or an equivalent amount of normal saline for 4 weeks. Then mice were examined for AS plaque area, lesion area, collagen fiber, pro-inflammatory cytokines, lipid level, ROS level and mitophagy level. We assessed AS using Oil Red O, hematoxylin and eosin, and Sirius red staining, as well as ROS measurements. Mitophagy was evaluated by transmission electron microscopy, real-time quantitative polymerase chain reaction (RT-qPCR), Western blot, single-cell Western blot, and immunofluorescence staining. In vitro, by oxidizing low-density lipoprotein, formation of RAW264.7 macrophage-derived foam cells induced. we induced foam cell formation in RAW264.7 macrophages. Then cells were incubated with XMK-medicated serum with or without Mdivi-1. We examined foam cell formation, ROS level, mitophagy level in cells. Finally, we knocked down the PINK1, and examined foam cell formation and PINK1/Parkin level in RAW264.7 macrophages. RESULTS: UPLC analysis revealed 102 main ingredients in XMK. In vivo, XMK at medium-dose or high-dose significantly reduced AS plaques, lipids, pro-inflammatory cytokines, and ROS and increased mitophagy. In further study, Single-cell western blot showed that mitophagy level in macrophages sorted from AS mice was lower than the control mice. While XMK improved mitophagy level. In vitro, XMK reduced foam cell formation and ROS and increased mitophagy. When PINK1 was knocked down, XMK's effects on foam cell formation and PINK1/Parkin pathway activation were reduced. CONCLUSION: The study shows that XMK is effective against AS by mediating macrophage mitophagy via the PINK1/Parkin signaling pathway. For the treatment of AS and drug discovery, it provides an experimental basis and target.