RESUMO
Despite the rapid development of therapeutic strategies in cancer treatment, metastasis remains the major cause of cancer-related death and scientific challenge. Epithelial-Mesenchymal Transition (EMT) plays a crucial role in cancer invasion and progression, a process by which tumor cells lose cell-cell adhesion and acquire increased invasiveness and metastatic activity. Recent work has uncovered some crucial roles of extracellular adenosine 5'- triphosphate (eATP), a major component of the tumor microenvironment (TME), in promoting tumor growth and metastasis. Intratumoral extracellular ATP (eATP), at levels of 100-700 µM, is 103-104 times higher than in normal tissues. In the current literature, eATP's function in promoting metastasis has been relatively poorly understood as compared with intracellular ATP (iATP). Recent evidence has shown that cancer cells internalize eATP via macropinocytosis in vitro and in vivo, promoting cell growth and survival, drug resistance, and metastasis. Furthermore, ATP acts as a messenger molecule that activates P2 purinergic receptors expressed on both tumor and host cells, stimulating downstream signaling pathways to enhance the invasive and metastatic properties of tumor cells. Here, we review recent progress in understanding eATP's role in each step of the metastatic cascade, including initiating invasion, inducing EMT, overcoming anoikis, facilitating intravasation, circulation, and extravasation, and eventually establishing metastatic colonization. Collectively, these studies reveal eATP's important functions in many steps of metastasis and identify new opportunities for developing more effective therapeutic strategies to target ATP-associated processes in cancer.
RESUMO
BACKGROUND: Extracellular ATP (eATP) was shown to induce epithelial-mesenchymal transition (EMT), a very important early process in metastasis, in cancer cells via purinergic receptor signaling. However, the exact induction mechanisms are far from fully known. We previously described that eATP is internalized by cancer cells in vitro and in vivo by macropinocytosis in human non-small cell lung cancer A549 and other cancer cells, drastically elevates intracellular ATP levels, enhances cell proliferation and resistance to anticancer drugs. In this study, we tested the hypothesis that eATP and macropinocytosis-internalized eATP also induces EMT and other early steps of metastasis. METHODS: Floating cells, fencing, and transwell assays were used to show that ATP induces cell detachment, new colony formation, migration and invasion in human A549 and other lung cancer cells. Western blots were used to detect ATP-induced changes in EMT-related proteins; Confocal microscopy was used to demonstrate ATP-induced metastasis-related cell morphological changes. Inhibitors and siRNA knockdowns were used to determine P2X7's involvement in the ATP-induced EMT. CRISPR-Cas9 knockout of the SNX5 gene was used to identify macropinocytosis' roles in EMT and cancer cell growth both in vitro and in vivo. Student t-test and one-way ANOVA were used to determine statistical significance, P < 0.05 was considered significant. RESULTS: eATP potently induces expression of matrix metallopeptidases (MMPs), and detachment, EMT, migration, and invasion of lung cancer cells. The induction was independent of TGF-ß and semi-independent of P2X7 activation. eATP performs these functions not only extracellularly, but also intracellularly after being macropinocytically internalized to further enhance P2X7-mediated EMT, filopodia formation and other early steps of metastasis. The knockout of macropinocytosis-associated SNX5 gene significantly reduces macropinocytosis, slows down tumor growth, and changes tumor morphology in nude mice. CONCLUSIONS: Collectively, these results show that eATP's functions in these processes not only from outside of cancer cells but also inside after being macropinocytotically internalized. These findings shed light on eATP's initiator and effector roles in almost every step in early metastasis, which calls for rethinking and rebalancing energy equations of intracellular biochemical reactions and the Warburg effect, and identifies eATP and macropinocytosis as novel targets for potentially slowing down EMT and preventing metastasis.
RESUMO
A transposon mutant library of B. melitensis NI including 32,640 transposon mutants was established. By sequencing the transposon insertion sites, 10,832 mutants were successfully defined for their insertion sites. Analysis of the mutants with defined transposon insertion sites (DTIS) indicated that the insertions were well spread through the two genomes. In addition, 948 genes with no detectable transposon insertions were taken as the candidate for identification of essential genes. In comparison with the Bacterial Database of Essential Genes and by using comparative genomics analysis, 183 potential essential genes of B. melitensis NI cultured in vitro were found and they were conserved in the common bacteria. This work was focused on screening of the essential genes of B. melitensis NI, which may provide a foundation for identification of the novel drug targets against brucellosis. Besides, the sequence-defined transposon library should serve as a resource for screening of different function genes of Brucella.
Assuntos
Brucella melitensis/genética , Elementos de DNA Transponíveis/genética , Genes Bacterianos/genética , Genes Essenciais/genética , Estudo de Associação Genômica Ampla , Mutagênese Insercional , Sequência de Bases , Brucelose/microbiologia , Mapeamento Cromossômico , Conjugação Genética , Escherichia coli/genética , Biblioteca Gênica , Genoma Bacteriano , Mutagênese , Mutação/genéticaRESUMO
Introduction: Resistance to drug therapies is associated with a large majority of cancer-related deaths. ATP-binding cassette (ABC) transporter-mediated drug efflux, epithelial-mesenchymal transition (EMT), cancer stem cells (CSCs), glutathione (GSH), senescence, and vacuole-type ATPase (V-ATPase) all contribute to the resistance. We recently showed that extracellular ATP (eATP) induces and regulates EMT, CSC formation, and ABC transporters in human cancer cells and tumors. eATP also consistently upregulates Stanniocalcin-1 (STC1), a gene that significantly contributes to EMT, CSC formation, and tumor growth. We also found that eATP enhances drug resistance in cancer cells through eATP internalization mediated by macropinocytosis, leading to an elevation of intracellular ATP (iATP) levels, induction of EMT, and CSC formation. However, these factors have never been systematically investigated in the context of eATP-induced drug resistance. Methods: In this study, we hypothesized that eATP increases drug resistance via inducing ABC efflux, EMT, CSCs, STC1, and their accompanied processes such as GSH reducing activity, senescence, and V-ATPase. RNA sequencing, metabolomics, gene knockdown and knockout, and functional assays were performed to investigate these pathways and processes. Results and discussion: Our study results showed that, in multiple human cancer lines, eATP induced genes involved in drug resistance, elevated ABC transporters' efflux activity of anticancer drugs; generated transcriptomic and metabolic profiles representing a drug resistant state; upregulated activities of GSH, senescence, and V-ATPase to promote drug resistance. Collectively, these newly found players shed light on the mechanisms of eATP-induced as well as STC1- and V-ATPase-mediated drug resistance and offer potential novel targets for combating drug resistance in cancers.
RESUMO
Carcinoma dissemination can occur when heterogeneous tumor and tumor-stromal cell clusters migrate together via collective migration. Cells at the front lead and direct collective migration, yet how these leader cells form and direct migration are not fully appreciated. From live videos of primary mouse and human breast tumor organoids in a 3D microfluidic system mimicking native breast tumor microenvironment, we developed 3D computational models, which hypothesize that leader cells need to generate high protrusive forces and overcome extracellular matrix (ECM) resistance at the leading edge. From single-cell sequencing analyses, we find that leader cells are heterogeneous and identify and isolate a keratin 14- and cadherin-3-positive subpopulation sufficient to lead collective migration. Cdh3 controls leader cell protrusion dynamics through local production of laminin, which is required for integrin/focal adhesion function. Our findings highlight how a subset of leader cells interact with the microenvironment to direct collective migration.
Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Camundongos , Humanos , Animais , Feminino , beta Catenina , Laminina , Movimento Celular/fisiologia , Caderinas/metabolismo , Neoplasias da Mama/patologia , Microambiente TumoralRESUMO
PURPOSE: Previously we showed that natural compound α-penta-galloyl-glucose (α-PGG) and its synthetic derivative 6-chloro-6-deoxy-1,2,3,4-tetra-O-galloyl-α-D-glucopyranose (6Cl-TGQ) act to improve insulin signaling in adipocytes by increasing glucose transport. In this study, we investigated the mechanism of actions of α-PGG and 6Cl-TGQ on insulin secretion. METHODS: Mouse islets and/or INS-1832/13 beta-cells were used to test the effects of our compounds on glucose-stimulated insulin secretion (GSIS), intracellular calcium [Ca2+]i using fura-2AM, glucose transport activity via a radioactive glucose uptake assay, intracellular ATP/ADP, and extracellular acidification (ECAR) and mitochondrial oxygen consumption rates (OCAR) using Seahorse metabolic analysis. RESULTS: Both compounds reduced GSIS in beta-cells without negatively affecting cell viability. The compounds primarily diminished glucose uptake into islets and beta-cells. Despite insulin-like effects in the peripheral tissues, these compounds do not act through the insulin receptor in islets. Further interrogation of the stimulus-secretion pathway showed that all the key metabolic factors involved in GSIS including ECAR, OCAR, ATP/ADP ratios, and [Ca2+]i of INS-1832/13 cells were diminished after the compound treatment. CONCLUSION: The compounds suppress glucose uptake of the beta-cells, which consequently slows down the rates of glycolysis and ATP synthesis, leading to decrease in [Ca2+]i and GSIS. The difference between adipocytes and beta-cells in effects on glucose uptake is of great interest. Further structural and functional modifications could produce new compounds with optimized therapeutic potentials for different target cells. The higher potency of synthetic 6Cl-TGQ in enhancing insulin signaling in adipocytes but lower potency in reducing glucose uptake in beta-cells compared to α-PGG suggests the feasibility of such an approach.
RESUMO
Cancer cells are able to uptake extracellular ATP (eATP) via macropinocytosis to elevate intracellular ATP (iATP) levels, enhancing their survival in drug treatment. However, the involved drug resistance mechanisms are unknown. Here we investigated the roles of eATP as either an energy or a phosphorylating molecule in general drug resistance mediated by ATP internalization and iATP elevation. We report that eATP increased iATP levels and promoted drug resistance to various tyrosine kinase inhibitors (TKIs) and chemo-drugs in human cancer cell lines of five cancer types. In A549 lung cancer cells, the resistance was downregulated by macropinocytosis inhibition or siRNA knockdown of PAK1, an essential macropinocytosis enzyme. The elevated iATP upregulated the efflux activity of ABC transporters in A549 and SK-Hep-1 cells as well as phosphorylation of PDGFRα and proteins in the PDGFR-mediated Akt-mTOR and Raf-MEK signaling pathways in A549 cells. Similar phosphorylation upregulations were found in A549 tumors. These results demonstrate that eATP induces different types of drug resistance by eATP internalization and iATP elevation, implicating the ATP-rich tumor microenvironment in cancer drug resistance, expanding our understanding of the roles of eATP in the Warburg effect and offering new anticancer drug resistance targets.
RESUMO
Intratumoral extracellular ATP concentrations are 1000 times higher than those in normal tissues of the same cell origin. However, whether or not cancer cells use the abundant extracellular ATP was unknown until we recently reported that cancer cells internalize ATP. The internalized ATP was found to substantially increase intracellular ATP concentration and promote cell proliferation and drug resistance in cancer cells. Here, using a nonhydrolyzable fluorescent ATP (NHF-ATP), radioactive and regular ATP, coupled with high and low molecular weight dextrans as endocytosis tracers and fluorescence microscopy and ATP assays, cultured human NSCLC A549 and H1299 cells as well as A549 tumor xenografts were found to internalize extracellular ATP at concentrations within the reported intratumoral extracellular ATP concentration range. In addition to macropinocytosis, both clathrin- and caveolae-mediated endocytosis significantly contribute to the ATP internalization, which led to an approximately 30% (within 45 minutes) or more than 50% (within 4 hours) increase in intracellular ATP levels after ATP incubation. This increase could not be accounted for by either purinergic receptor signaling or increased intracellular ATP synthesis rates in the ATP-treated cancer cells. These new findings significantly deepen our understanding of the Warburg effect by shedding light on how cancer cells in tumors, which are heterogeneous for oxygen and nutrition supplies, take up extracellular ATP and use the internalized ATP to perform multiple previously unrecognized functions of biological importance. They strongly suggest the existence of ATP sharing among cancer and stromal cells in tumors and simultaneously identify multiple new anticancer targets. IMPLICATIONS: Extracellular ATP is taken up by human lung cancer cells and tumors via macropinocytosis and other endocytic processes to supplement their extra energy needs for cancer growth, survival, and drug resistance, thus providing novel targets for future cancer therapy. Mol Cancer Res; 14(11); 1087-96. ©2016 AACR.