Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37763468

RESUMO

The finger lock structure of aircraft landing gear is prone to wear and failure during repeated locking and unlocking processes, which is disastrous for the service safety of the aircraft. At present, the commonly used material for finger locks in the industry is 30CrMnSiNi2A, which has a short wear life and high maintenance costs. It is crucial to develop effective methods to improve the wear resistance of 30CrMnSiNi2A finger locks. This work explores the wear resistance and wear mechanisms of different metallic coatings such as chromium, nickel, and cadmium-titanium on the surface of a 30CrMnSiNi2A substrate. The effects of load and wear time on the wear behavior are also discussed. The results indicated that the wear resistance of the chromium coating was the maximum. When the load was 80 N and 120 N, the wear mechanisms were mainly oxidation and adhesive. For greater loads, the wear mechanism of the coating after failure was mainly abrasive and oxidation, and the wear was extremely severe. When the load was 80 N, for a greater loading time, the wear mechanisms were mainly oxidation and adhesive.

2.
Materials (Basel) ; 15(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35269115

RESUMO

In view of the serious sliding electrical contact performance caused by external vibration and environmental contaminant, a study on the tribological characteristic and contact resistance of Cu alloy was conducted using a self-developed micro-load reciprocating electric contact device. Various glue concentrations (0%, 10%, 30%, and 50%) were prepared with anhydrous ethanol and deposited on the surface of a pure copper block via the deposition method. An external vibration source was installed on the sliding module to achieve vertical vibration. The results indicate that the final contact resistance and coefficient of friction (COF) in direct metal contact are about 0.01 Ω and 0.3, respectively. At this time, the wear volume is 2 to 3 orders of magnitude higher than the condition with glue residual. As glue concentration is above 10%, residual glue on the surface of Cu alloy hinders efficient contact between friction pairs, resulting in higher contact resistance. Glue exhibits lubrication, anti-wear, and insulation properties. External vibration causes friction pairs to briefly separate, leading to a lower glue removal capacity than that under non-vibration conditions. The contact resistance with glue addition under vibration conditions is higher than that under non-vibration conditions at 3 × 104 cycles. The dominant oxide product is CuO, which has a limited effect on contact resistance.

3.
RSC Adv ; 10(5): 2598-2614, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35496126

RESUMO

This article demonstrated a chip device with alternating current (AC) dielectrophoresis (DEP) for separation of non-biological micro-particle and bacteria mixtures. The DEP separation was achieved by a pair of metal electrodes with the shape of radal-interdigital to generate a localized non-uniform AC electric field. The electric field and DEP force were firstly investigated by finite element methods (FEM). The mixed microparticles such as different scaled polystyrene (PS) beads, PS beads with inorganic micro-particles (e.g., ZnO and silica beads) and non-bioparticles with bacterial Staphylococcus aureus (S. aureus) were successfully separated at DEP-on-a-chip by an AC electric field of 20 kHz, 10 kHz and 1 MHz, respectively. The results indicated that DEP trapping can be considered as a potential candidate method for investigating the separation of biological mixtures, and may well prove to have a great impact on in situ monitoring of environmental and/or biological samples by DEP-on-a-chip.

4.
Materials (Basel) ; 13(12)2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580483

RESUMO

This paper analyzes the dynamic magneto-mechanical response in magnetization-graded ferromagnetic materials (MGFM) comprised of high-permeability Finemet and traditional magnetostrictive materials. The theoretical modeling of the piezomagnetic coefficient that depends on the bias magnetic field of MGFM is proposed by using the nonlinear constitutive model of a piezomagnetic material, the magnetoelectric equivalent circuit method, and the simulation software Ansoft. The theoretical variation of piezomagnetic coefficients of MGFM on the bias magnetic field is in good agreement with the experiment. Using the piezomagnetic coefficient in the magnetoelectric voltage model, the theoretical longitudinal resonant magnetoelectric voltage coefficients have also been calculated, which are consistent with the experimental values. This theoretical analysis is beneficial to comprehensively understand the self-biased piezomagnetic response of MGFM, and to design magnetoelectric devices with MGFM.

5.
Rev Sci Instrum ; 90(9): 095103, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31575227

RESUMO

Sliding electrical contact exists in various electrical equipment. However, its performance is significantly affected by the sliding condition such as the load, electricity, and the surface state of friction pairs. In this study, a novel instrument is designed and constructed for high-frequency microforce electrical sliding friction testing. The new instrument provides a unique experimental platform that enables high-frequency reciprocating friction and microforce loading, and it has an innovative data collection system that includes a cantilever beam structure to measure the microforce. In this instrument, parameters (positive force, friction, displacement, and voltage of frictional pair) are obtained and monitored in real time. The steel sheet and nickel-plated steel wire were used as materials to conduct an experiment, and the steel sheet morphology after the experiment was observed using a light microscope. Results show that the voltage and positive load significantly influence the friction coefficient and friction wear, which is crucial in understanding friction and wear behaviors.

6.
Asian Pac J Cancer Prev ; 14(12): 7081-4, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24460254

RESUMO

MicroRNAs have been demonstrated to regulate proliferation and apoptosis in many types of cancers, but biological functions in osteosarcomas remain relatively unknown. Here, we found expression of miR-802 to be up-regulated in osteosarcoma tissues in comparison with adjacent normal tissues. Enforced expression of miR-802 was able to promote cell proliferation in U2OS and MG63 cells, while miR-802 antisense oligonucleotides (antisense miR-802) inhibited cell proliferation. At the molecular level, our results further revealed that expression of p27, a negative cell-cycle regulator, was negatively regulated by miR-802. Therefore, the data reported here indicate that miR-802 is an important regulator in osteosarcoma, our findings contributing to a better understanding of important mis-regulated miRNAs in this tumour type.


Assuntos
Neoplasias Ósseas/patologia , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Osteossarcoma/patologia , Regiões 3' não Traduzidas/genética , Western Blotting , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Osso e Ossos/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Humanos , Técnicas Imunoenzimáticas , Luciferases/metabolismo , MicroRNAs/antagonistas & inibidores , Oligonucleotídeos Antissenso/genética , Osteossarcoma/genética , Osteossarcoma/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA