Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
1.
Am J Physiol Renal Physiol ; 326(6): F894-F916, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634137

RESUMO

Mild cognitive impairment (MCI) is common in people with chronic kidney disease (CKD), and its prevalence increases with progressive loss of kidney function. MCI is characterized by a decline in cognitive performance greater than expected for an individual age and education level but with minimal impairment of instrumental activities of daily living. Deterioration can affect one or several cognitive domains (attention, memory, executive functions, language, and perceptual motor or social cognition). Given the increasing prevalence of kidney disease, more and more people with CKD will also develop MCI causing an enormous disease burden for these individuals, their relatives, and society. However, the underlying pathomechanisms are poorly understood, and current therapies mostly aim at supporting patients in their daily lives. This illustrates the urgent need to elucidate the pathogenesis and potential therapeutic targets and test novel therapies in appropriate preclinical models. Here, we will outline the necessary criteria for experimental modeling of cognitive disorders in CKD. We discuss the use of mice, rats, and zebrafish as model systems and present valuable techniques through which kidney function and cognitive impairment can be assessed in this setting. Our objective is to enable researchers to overcome hurdles and accelerate preclinical research aimed at improving the therapy of people with CKD and MCI.


Assuntos
Disfunção Cognitiva , Modelos Animais de Doenças , Insuficiência Renal Crônica , Animais , Insuficiência Renal Crônica/fisiopatologia , Insuficiência Renal Crônica/psicologia , Insuficiência Renal Crônica/complicações , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/psicologia , Humanos , Camundongos , Peixe-Zebra , Cognição , Ratos , Rim/fisiopatologia , Rim/metabolismo
2.
Nephrol Dial Transplant ; 39(2): 297-304, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37463050

RESUMO

BACKGROUND: The use of cyclosporin A (CsA) is hampered by the development of nephrotoxicity including hypertension, which is partially dependent on renal sodium retention. To address this issue, we have investigated in vivo sodium reabsorption in different nephron segments of CsA-treated rats through micropuncture study coupled to expression analyses of sodium transporters. To translate the findings in rats to human, kidney-transplanted patients having CsA treatment were enrolled in the study. METHODS: Adult male Sprague-Dawley rats were treated with CsA (15 mg/kg/day) for 21 days, followed by micropuncture study and expression analyses of sodium transporters. CsA-treated kidney-transplanted patients with resistant hypertension were challenged with 50 mg furosemide. RESULTS: CsA-treated rats developed hypertension associated with reduced glomerular filtration rate. In vivo microperfusion study demonstrated a significant decrease in rate of absolute fluid reabsorption in the proximal tubule but enhanced sodium reabsorption in the thick ascending limb of Henle's loop (TAL). Expression analyses of sodium transporters at the same nephron segments further revealed a reduction in Na+-H+ exchanger isoform 3 (NHE3) in the renal cortex, while TAL-specific, furosemide-sensitive Na+-K+-2Cl- cotransporter (NKCC2) and NHE3 were significantly upregulated in the inner stripe of outer medulla. CsA-treated patients had a larger excretion of urinary NKCC2 protein at basal condition, and higher diuretic response to furosemide, showing increased FeNa+, FeCl- and FeCa2+ compared with both healthy controls and FK506-treated transplanted patients. CONCLUSION: Altogether, these findings suggest that up-regulation of NKCC2 along the TAL facilitates sodium retention and contributes to the development of CsA-induced hypertension.


Assuntos
Ciclosporina , Hipertensão , Adulto , Humanos , Masculino , Ratos , Animais , Ciclosporina/efeitos adversos , Trocador 3 de Sódio-Hidrogênio/metabolismo , Regulação para Cima , Furosemida , Ratos Sprague-Dawley , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Sódio/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/metabolismo
3.
Pharmacol Res ; 203: 107146, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493928

RESUMO

Patients with chronic kidney disease (CKD) often experience mild cognitive impairment and other neurocognitive disorders. Studies have shown that erythropoietin (EPO) and its receptor have neuroprotective effects in cell and animal models of nervous system disorders. Recombinant human EPO (rHuEPO), commonly used to treat anemia in CKD patients, could be a neuroprotective agent. In this systematic review, we aimed to assess the published studies investigating the cognitive benefits of rHuEPO treatment in individuals with reduced kidney function. We comprehensively searched Pubmed, Cochrane Library, Scopus, and Web of Science databases from 1990 to 2023. After selection, 24 studies were analyzed, considering study design, sample size, participant characteristics, intervention, and main findings. The collective results of these studies in CKD patients indicated that rHuEPO enhances brain function, improves performance on neuropsychological tests, and positively affects electroencephalography measurements. These findings suggest that rHuEPO could be a promising neuroprotective agent for managing CKD-related cognitive impairment.


Assuntos
Disfunção Cognitiva , Eritropoetina , Fármacos Neuroprotetores , Insuficiência Renal Crônica , Humanos , Eritropoetina/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/psicologia , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Animais , Proteínas Recombinantes/uso terapêutico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Cognição/efeitos dos fármacos
4.
Nephrol Dial Transplant ; 38(3): 586-598, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35921220

RESUMO

BACKGROUND: The kidney is the main organ in the pathophysiology of essential hypertension. Although most bicarbonate reabsorption occurs in the proximal tubule, the medullary thick ascending limb (mTAL) of the nephron also maintains acid-base balance by contributing to 25% of bicarbonate reabsorption. A crucial element in this regulation is the sodium-hydrogen exchanger 1 (NHE1), a ubiquitous membrane protein controlling intracellular pH, where proton extrusion is driven by the inward sodium flux. MicroRNA (miRNA) expression of hypertensive patients significantly differs from that of normotensive subjects. The aim of this study was to determine the functional role of miRNA alterations at the mTAL level. METHODS: By miRNA microarray analysis, we identified miRNA expression profiles in isolated mTALs from high sodium intake-induced hypertensive rats (HSD) versus their normotensive counterparts (NSD). In vitro validation was carried out in rat mTAL cells. RESULTS: Five miRNAs involved in the onset of salt-sensitive hypertension were identified, including miR-23a, which was bioinformatically predicted to target NHE1 mRNA. Data demonstrated that miRNA-23a is downregulated in the mTAL of HSD rats while NHE1 is upregulated. Consistently, transfection of an miRNA-23a mimic in an mTAL cell line, using a viral vector, resulted in NHE1 downregulation. CONCLUSION: NHE1, a protein involved in sodium reabsorption at the mTAL level and blood pressure regulation, is upregulated in our model. This was due to a downregulation of miRNA-23a. Expression levels of this miRNA are influenced by high sodium intake in the mTALs of rats. The downregulation of miRNA-23a in humans affected by essential hypertension corroborate our data and point to the potential role of miRNA-23a in the regulation of mTAL function following high salt intake.


Assuntos
Hipertensão , MicroRNAs , Animais , Humanos , Ratos , Bicarbonatos , Hipertensão Essencial/metabolismo , Hipertensão/metabolismo , Medula Renal , MicroRNAs/metabolismo , Sódio/metabolismo , Cloreto de Sódio na Dieta , Trocador 1 de Sódio-Hidrogênio/metabolismo , Trocador 3 de Sódio-Hidrogênio/metabolismo
5.
Eur J Neurol ; 30(9): 2899-2911, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37326125

RESUMO

BACKGROUND: Cognitive impairment is common in patients with chronic kidney disease (CKD), and early intervention may prevent the progression of this condition. METHODS: Here, we review interventions for the complications of CKD (anemia, secondary hyperparathyroidism, metabolic acidosis, harmful effects of dialysis, the accumulation of uremic toxins) and for prevention of vascular events, interventions that may potentially be protective against cognitive impairment. Furthermore, we discuss nonpharmacological and pharmacological methods to prevent cognitive impairment and/or minimize the latter's impact on CKD patients' daily lives. RESULTS: A particular attention on kidney function assessment is suggested during work-up for cognitive impairment. Different approaches are promising to reduce cognitive burden in patients with CKD but the availabe dedicated data are scarce. CONCLUSIONS: There is a need for studies assessing the effect of interventions on the cognitive function of patients with CKD.


Assuntos
Transtornos Cognitivos , Disfunção Cognitiva , Insuficiência Renal Crônica , Humanos , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/prevenção & controle , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/prevenção & controle , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/terapia , Cognição , Diálise Renal/efeitos adversos
6.
J Am Soc Nephrol ; 33(10): 1864-1875, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35820785

RESUMO

BACKGROUND: Mutations in SLC37A4, which encodes the intracellular glucose transporter G6PT, cause the rare glycogen storage disease type 1b (GSD1b). A long-term consequence of GSD1b is kidney failure, which requires KRT. The main protein markers of proximal tubule function, including NaPi2A, NHE3, SGLT2, GLUT2, and AQP1, are downregulated as part of the disease phenotype. METHODS: We utilized an inducible mouse model of GSD1b, TM-G6PT-/-, to show that glycogen accumulation plays a crucial role in altering proximal tubule morphology and function. To limit glucose entry into proximal tubule cells and thus to prevent glycogen accumulation, we administered an SGLT2-inhibitor, dapagliflozin, to TM-G6PT-/- mice. RESULTS: In proximal tubule cells, G6PT suppression stimulates the upregulation and activity of hexokinase-I, which increases availability of the reabsorbed glucose for intracellular metabolism. Dapagliflozin prevented glycogen accumulation and improved kidney morphology by promoting a metabolic switch from glycogen synthesis toward lysis and by restoring expression levels of the main proximal tubule functional markers. CONCLUSION: We provide proof of concept for the efficacy of dapagliflozin in preserving kidney function in GSD1b mice. Our findings could represent the basis for repurposing this drug to treat patients with GSD1b.


Assuntos
Doença de Depósito de Glicogênio Tipo I , Túbulos Renais Proximais , Camundongos , Animais , Transportador 2 de Glucose-Sódio/metabolismo , Túbulos Renais Proximais/metabolismo , Rim/metabolismo , Modelos Animais de Doenças , Glucose/metabolismo , Doença de Depósito de Glicogênio Tipo I/complicações , Doença de Depósito de Glicogênio Tipo I/metabolismo , Glicogênio/metabolismo
7.
Pflugers Arch ; 474(7): 733-741, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35397662

RESUMO

Renal micropuncture, which requires the direct access to the renal tubules, has for long time been the technique of choice to measure the single nephron glomerular filtration rate (SNGFR) in animal models. This approach is challenging by virtue of complex animal preparation and numerous technically difficult steps. The introduction of intravital multiphoton microscopy (MPM) offers another approach to the measure of the SNGFR by mean of the high laser-tissue penetration and the optical sectioning capacity. Previous MPM studies measuring SNGFR in vivo relied on fast full-frame acquisition during the filtration process obtainable with high performance resonant scanners. In this study, we describe an innovative linescan-based MPM method. The new method can discriminate SNGFR variations both in conditions of low and high glomerular filtration, and shows results comparable to conventional micropuncture both for rats and mice. Moreover, this novel approach has improved spatial and time resolution and is faster than previous methods, thus enabling the investigation of SNGFR from more tubules and improving options for data-analysis.


Assuntos
Microscopia , Néfrons , Animais , Taxa de Filtração Glomerular , Rim , Túbulos Renais , Camundongos , Punções , Ratos
8.
Am J Med Genet C Semin Med Genet ; 190(1): 9-19, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35373910

RESUMO

Bardet-Biedl syndrome (BBS) is a rare pleiotropic disorder known as a ciliopathy. Despite significant genetic heterogeneity, BBS1 and BBS10 are responsible for major diagnosis in western countries. It is well established that eight BBS proteins, namely BBS1, 2, 4, 5, 7, 8, 9, and 18, form the BBSome, a multiprotein complex serving as a regulator of ciliary membrane protein composition. Less information is available for BBS6, BBS10, and BBS12, three proteins showing sequence homology with the CCT/TRiC family of group II chaperonins. Even though their chaperonin function is debated, scientific evidence demonstrated that they are required for initial BBSome assembly in vitro. Recent studies suggest that genotype may partially predict clinical outcomes. Indeed, patients carrying truncating mutations in any gene show the most severe phenotype; moreover, mutations in chaperonin-like BBS proteins correlated with severe kidney impairment. This study is a critical review of the literature on genetics, expression level, cellular localization and function of BBS proteins, focusing primarily on the chaperonin-like BBS proteins, and aiming to provide some clues to understand the pathomechanisms of disease in this setting.


Assuntos
Síndrome de Bardet-Biedl , Chaperoninas , Chaperoninas do Grupo II , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/metabolismo , Chaperoninas/genética , Chaperoninas/metabolismo , Chaperoninas do Grupo II/genética , Chaperoninas do Grupo II/metabolismo , Humanos , Mutação
9.
Mol Imaging ; 2022: 7908357, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35418808

RESUMO

Accumulation of uremic toxins may lead to the life-threatening condition "uremic syndrome" in patients with advanced chronic kidney disease (CKD) requiring renal replacement therapy. Clinical evaluation of proximal tubular secretion of organic cations (OC), of which some are uremic toxins, is desired, but difficult. The biomedical knowledge on OC secretion and cellular transport partly relies on studies using the fluorescent tracer 4-dimethylaminostyryl)-N-methylpyridinium (ASP+), which has been used in many studies of renal excretion mechanisms of organic ions and which could be a candidate as a PET tracer. This study is aimed at expanding the knowledge of the tracer characteristics of ASP+ by recording the distribution and intensity of ASP+ signals in vivo both by fluorescence and by positron emission tomography (PET) imaging and at investigating if the fluorescence signal of ASP+ is influenced by the presence of albumin. Two-photon in vivo microscopy of male Münich Wistar Frömter rats showed that a bolus injection of ASP+ conferred a fluorescence signal to the blood plasma lasting for about 30 minutes. In the renal proximal tubule, the bolus resulted in a complex pattern of fluorescence including a rapid and strong transient signal at the brush border, a very low signal in the luminal fluid, and a slow transient intracellular signal. PET imaging using 11C-labelled ASP+ showed accumulation in the liver, heart, and kidney. Fluorescence emission spectra recorded in vitro of ASP+ alone and in the presence of albumin using both 1-photon excitation and two-photon excitation showed that albumin strongly enhance the emission from ASP+ and induce a shift of the emission maximum from 600 to 570 nm. Conclusion. The renal pattern of fluorescence observed from ASP+ in vivo is likely affected by the local concentration of albumin, and quantification of ASP+ fluorescent signals in vivo cannot be directly translated to ASP+ concentrations.


Assuntos
Albuminas , Rim , Albuminas/metabolismo , Animais , Cátions/metabolismo , Fluorescência , Humanos , Rim/diagnóstico por imagem , Rim/metabolismo , Masculino , Compostos de Piridínio , Ratos , Ratos Wistar
10.
Nephrol Dial Transplant ; 37(5): 825-839, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35134221

RESUMO

Approval of the vasopressin V2 receptor antagonist tolvaptan-based on the landmark TEMPO 3:4 trial-marked a transformation in the management of autosomal dominant polycystic kidney disease (ADPKD). This development has advanced patient care in ADPKD from general measures to prevent progression of chronic kidney disease to targeting disease-specific mechanisms. However, considering the long-term nature of this treatment, as well as potential side effects, evidence-based approaches to initiate treatment only in patients with rapidly progressing disease are crucial. In 2016, the position statement issued by the European Renal Association (ERA) was the first society-based recommendation on the use of tolvaptan and has served as a widely used decision-making tool for nephrologists. Since then, considerable practical experience regarding the use of tolvaptan in ADPKD has accumulated. More importantly, additional data from REPRISE, a second randomized clinical trial (RCT) examining the use of tolvaptan in later-stage disease, have added important evidence to the field, as have post hoc studies of these RCTs. To incorporate this new knowledge, we provide an updated algorithm to guide patient selection for treatment with tolvaptan and add practical advice for its use.


Assuntos
Rim Policístico Autossômico Dominante , Antagonistas dos Receptores de Hormônios Antidiuréticos/farmacologia , Antagonistas dos Receptores de Hormônios Antidiuréticos/uso terapêutico , Feminino , Humanos , Rim , Masculino , Seleção de Pacientes , Rim Policístico Autossômico Dominante/tratamento farmacológico , Tolvaptan/uso terapêutico
11.
Artigo em Inglês | MEDLINE | ID: mdl-36481657

RESUMO

BACKGROUND: Therapeutic Plasmapheresis (TP) is an extracorporeal therapy that allows the removal of pathogens from plasma. The role of TP in immuno-mediated diseases and toxic conditions has been of interest for decades. SUMMARY: We reviewed the recent literature on the application and the optimal choice of TP technique ranging from Plasma Exchange, Double Filtration Plasmapheresis, Rheopheresis, Immunoadsorptions and Lipidoapheresis. In addition, we report our experience in the application of TP for various diseases ranging in different medical specialties, following the American Society for Apheresis (ASFA) recommendations. KEY MESSAGES: Overall patients receiving TP showed an improvement in clinical and laboratory parameters. Our review and single center experience suggest a benefit of the application of TP in multiple clinical disciplines.

12.
Kidney Blood Press Res ; 47(7): 467-474, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35318291

RESUMO

INTRODUCTION: Since the pandemic of COVID-19 started from December 2019, remarkable numbers of infections and deaths associated with COVID-19 have been recorded worldwide. End-stage kidney disease patients on dialysis are particularly at high risk of infections due to impairments in the innate and adaptive immune systems. Vaccination on dialysis patients (DP) still remains challenging because of the variable response and a low seroconversion rate compared with healthy participants (HP). Therefore, it is urgently necessary to establish a different vaccination strategy for DP, in terms of the dose and administration time. METHODS: Here, we report an observational prospective cohort study in which the immunogenic efficacies of SARS-CoV-2 vaccine BNT162b2 on DP and HP were evaluated by absolute quantification of IgG levels in the blood. RESULTS: DP showed a delayed seroconversion after two vaccine doses, with a low absolute IgG levels compared to HP. While HP reached complete seroconversion within 10 days from the administration of a second dose, only 76% of DP were seropositive. After the booster dose, DP had a strongly improved seroconversion rate as well as antibody levels, reaching 97% seropositivity and 50 times enhancement on antibody levels. DISCUSSION/CONCLUSION: These results prompt to suggest an additional vaccine dose in DP, reducing the interval of time from the second dose. Since limited data are available on immune response in DP overtime after three vaccine doses currently, our study is among the first reports demonstrating the improved seropositivity and IgG levels in DP after the booster vaccine dose.


Assuntos
COVID-19 , Vacinas Virais , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Estudos de Coortes , Humanos , Imunidade , Imunoglobulina G , Estudos Prospectivos , Diálise Renal , SARS-CoV-2 , Vacinação
13.
J Am Soc Nephrol ; 32(6): 1339-1354, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33727367

RESUMO

BACKGROUND: MicroRNAs (miRNAs), formed by cleavage of pre-microRNA by the endoribonuclease Dicer, are critical modulators of cell function by post-transcriptionally regulating gene expression. METHODS: Selective ablation of Dicer in AQP2-expressing cells (DicerAQP2Cre+ mice) was used to investigate the role of miRNAs in the kidney collecting duct of mice. RESULTS: The mice had severe polyuria and nephrogenic diabetes insipidus, potentially due to greatly reduced AQP2 and AQP4 levels. Although epithelial sodium channel levels were decreased in cortex and increased in inner medulla, amiloride-sensitive sodium reabsorption was equivalent in DicerAQP2Cre+ mice and controls. Small-RNA sequencing and proteomic analysis revealed 31 and 178 significantly regulated miRNAs and proteins, respectively. Integrated bioinformatic analysis of the miRNAome and proteome suggested alterations in the epigenetic machinery and various transcription factors regulating AQP2 expression in DicerAQP2Cre+ mice. The expression profile and function of three miRNAs (miR-7688-5p, miR-8114, and miR-409-3p) whose predicted targets were involved in epigenetic control (Phf2, Kdm5c, and Kdm4a) or transcriptional regulation (GATA3, GATA2, and ELF3) of AQP2 were validated. Luciferase assays could not demonstrate direct interaction of AQP2 or the three potential transcription factors with miR-7688-5p, miR-8114, and miR-409-3p. However, transfection of respective miRNA mimics reduced AQP2 expression. Chromatin immunoprecipitation assays demonstrated decreased Phf2 and significantly increased Kdm5c interactions at the Aqp2 gene promoter in DicerAQP2Cre+ mice, resulting in decreased RNA Pol II association. CONCLUSIONS: Novel evidence indicates miRNA-mediated epigenetic regulation of AQP2 expression.


Assuntos
Aquaporina 2/genética , Epigênese Genética/genética , Regulação da Expressão Gênica , MicroRNAs/genética , Ribonuclease III/genética , Animais , Aquaporina 2/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Diabetes Insípido Nefrogênico/genética , Diabetes Insípido Nefrogênico/metabolismo , Regulação para Baixo , Canais Epiteliais de Sódio/metabolismo , Feminino , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA3/genética , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Proteínas de Homeodomínio/genética , Túbulos Renais Coletores/fisiologia , Masculino , Camundongos , Poliúria/genética , Poliúria/metabolismo , Proteoma , Processamento Pós-Transcricional do RNA , Reabsorção Renal , Análise de Sequência de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Int J Mol Sci ; 23(7)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35409276

RESUMO

A major paradigm in nephrology states that the loss of filtration function over a long time is driven by a persistent hyperfiltration state of surviving nephrons. This hyperfiltration may derive from circulating immunological factors. However, some clue about the hemodynamic effects of these factors derives from the effects of so-called nephroprotective drugs. Thirty years after the introduction of Renin-Angiotensin-system inhibitors (RASi) into clinical practice, two new families of nephroprotective drugs have been identified: the sodium-glucose cotransporter 2 inhibitors (SGLT2i) and the vasopressin receptor antagonists (VRA). Even though the molecular targets of the three-drug classes are very different, they share the reduction in the glomerular filtration rate (GFR) at the beginning of the therapy, which is usually considered an adverse effect. Therefore, we hypothesize that acute GFR decline is a prerequisite to obtaining nephroprotection with all these drugs. In this study, we reanalyze evidence that RASi, SGLT2i, and VRA reduce the eGFR at the onset of therapy. Afterward, we evaluate whether the extent of eGFR reduction correlates with their long-term efficacy. The results suggest that the extent of initial eGFR decline predicts the nephroprotective efficacy in the long run. Therefore, we propose that RASi, SGLT2i, and VRA delay kidney disease progression by controlling maladaptive glomerular hyperfiltration resulting from circulating immunological factors. Further studies are needed to verify their combined effects.


Assuntos
Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Antagonistas dos Receptores de Hormônios Antidiuréticos/farmacologia , Anti-Hipertensivos/farmacologia , Taxa de Filtração Glomerular , Sistema Renina-Angiotensina , Inibidores do Transportador 2 de Sódio-Glicose/efeitos adversos
15.
Int J Mol Sci ; 23(13)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35806367

RESUMO

The nervous system and the kidneys are linked under physiological states to maintain normal body homeostasis. In chronic kidney disease (CKD), damaged kidneys can impair the central nervous system, including cerebrovascular disease and cognitive impairment (CI). Recently, kidney disease has been proposed as a new modifiable risk factor for dementia. It is reported that uremic toxins may have direct neurotoxic (astrocyte activation and neuronal death) and/or indirect action through vascular effects (cerebral endothelial dysfunction, calcification, and inflammation). This review summarizes the evidence from research investigating the pathophysiological effects of phosphate toxicity in the nervous system, raising the question of whether the control of hyperphosphatemia in CKD would lower patients' risk of developing cognitive impairment and dementia.


Assuntos
Transtornos Cerebrovasculares , Disfunção Cognitiva , Demência , Insuficiência Renal Crônica , Transtornos Cerebrovasculares/etiologia , Disfunção Cognitiva/complicações , Demência/complicações , Humanos , Fosfatos , Insuficiência Renal Crônica/complicações
16.
Int J Mol Sci ; 23(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36012682

RESUMO

Bardet-Biedl syndrome (BBS) is a rare autosomal recessive ciliopathy resulting in multiple organ dysfunctions, including chronic kidney disease (CKD). Despite the recent progress in the 'ciliopathy' field, there is still little information on the mechanisms underlying renal disease. To elucidate these pathomechanisms, we conducted a translational study, including (i) the characterization of the urine metabolomic pattern of BBS patients and controls in a pilot and confirmation study and (ii) the proteomic analysis of the BBS10 interactome, one of the major mutated BBS genes in patients, in a renal-epithelial-derived cell culture model. The urine metabolomic fingerprinting of BBS patients differed from controls in both pilot and confirmation studies, demonstrating an increased urinary excretion of several monocarboxylates, including lactic acid (LA), at both early and late CKD stages. Increased urine LA was detected in the absence of both increased plasmatic LA levels and generalized proximal tubular dysfunction, suggesting a possible renal-specific defective handling. The inner medulla renal epithelial (IMCD3) cell line, where Bbs10 was stably invalidated, displayed an increased proliferative rate, increased ATP production, and an up-regulation of aerobic glycolysis. A mass spectrometry-based analysis detected several putative BBS10 interactors in vitro, indicating a potential role of BBS10 in several biological processes, including renal metabolism, RNA processing, and cell proliferation. The present study suggests that the urine metabolomic pattern of BBS patients may reflect intra-renal metabolic aberrations. The analysis of BBS10 interactors unveils possible novel functions, including cell metabolism.


Assuntos
Síndrome de Bardet-Biedl , Chaperoninas , Insuficiência Renal Crônica , Síndrome de Bardet-Biedl/genética , Chaperoninas/genética , Humanos , Mutação , Proteômica
17.
Kidney Int ; 99(2): 324-335, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33509356

RESUMO

Bartter syndrome is a rare inherited salt-losing renal tubular disorder characterized by secondary hyperaldosteronism with hypokalemic and hypochloremic metabolic alkalosis and low to normal blood pressure. The primary pathogenic mechanism is defective salt reabsorption predominantly in the thick ascending limb of the loop of Henle. There is significant variability in the clinical expression of the disease, which is genetically heterogenous with 5 different genes described to date. Despite considerable phenotypic overlap, correlations of specific clinical characteristics with the underlying molecular defects have been demonstrated, generating gene-specific phenotypes. As with many other rare disease conditions, there is a paucity of clinical studies that could guide diagnosis and therapeutic interventions. In this expert consensus document, the authors have summarized the currently available knowledge and propose clinical indicators to assess and improve quality of care.


Assuntos
Alcalose , Síndrome de Bartter , Hipopotassemia , Síndrome de Bartter/diagnóstico , Síndrome de Bartter/genética , Síndrome de Bartter/terapia , Consenso , Humanos , Doenças Raras
18.
Lancet ; 396(10246): 277-287, 2020 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-32711803

RESUMO

Acute and chronic kidney disease encompasses a complex set of diseases that can both lead to, and result from, cancer. In particular, kidney disease can arise from the use of chemotherapeutic agents. Many of the current and newly developed cancer chemotherapeutic agents are nephrotoxic and can promote kidney dysfunction, which frequently manifests during the terminal stages of cancer. Given the link between kidney disease and cancer development and treatment, the aim of this Review is to highlight the importance of multidisciplinary collaboration between oncologists and nephrologists to predict and prevent chemotherapeutic-induced nephrotoxicity. As new therapies are introduced to treat cancer, new renal toxicities require proper diagnosis and management. We anticipate that multidisciplinary collaborations will lead to the development and implementation of guidelines for clinicians to improve the therapeutic management of patients with both cancer and renal impairment.


Assuntos
Antineoplásicos/efeitos adversos , Nefropatias/induzido quimicamente , Neoplasias/tratamento farmacológico , Insuficiência Renal Crônica/complicações , Injúria Renal Aguda/induzido quimicamente , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/uso terapêutico , Humanos , Comunicação Interdisciplinar , Nefropatias/patologia , Nefrologistas , Oncologistas , Guias de Prática Clínica como Assunto , Valor Preditivo dos Testes , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/fisiopatologia
19.
Nephrol Dial Transplant ; 37(Suppl 2): ii55-ii62, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34739540

RESUMO

Kidney dysfunction can profoundly influence many organ systems, and recent evidence suggests a potential role for increased albuminuria in the development of mild cognitive impairment (MCI) or dementia. Epidemiological studies conducted in different populations have demonstrated that the presence of increased albuminuria is associated with a higher relative risk of MCI or dementia both in cross-sectional analyses and in studies with long-term follow-up. The underlying pathophysiological mechanisms of albuminuria's effect are as yet insufficiently studied, with several important knowledge gaps still present in a complex relationship with other MCI and dementia risk factors. Both the kidney and the brain have microvascular similarities that make them sensitive to endothelial dysfunction involving different mechanisms, including oxidative stress and inflammation. The exact substrate of MCI and dementia is still under investigation, however available experimental data indicate that elevated albuminuria and low glomerular filtration rate are associated with significant neuroanatomical declines in hippocampal function and grey matter volume. Thus, albuminuria may be critical in the development of cognitive impairment and its progression to dementia. In this review, we summarize the available evidence on albuminuria's link to MCI and dementia, point to existing gaps in our knowledge and suggest actions to overcome them. The major question of whether interventions that target increased albuminuria could prevent cognitive decline remains unanswered. Our recommendations for future research are aimed at helping to plan clinical trials and to solve the complex conundrum outlined in this review, with the ultimate goal of improving the lives of patients with chronic kidney disease.


Assuntos
Disfunção Cognitiva , Demência , Albuminúria/complicações , Disfunção Cognitiva/etiologia , Estudos Transversais , Demência/complicações , Demência/etiologia , Progressão da Doença , Humanos , Fatores de Risco
20.
Nephrol Dial Transplant ; 37(Suppl 2): ii4-ii12, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34718761

RESUMO

Metabolic acidosis, defined as a plasma or serum bicarbonate concentration <22 mmol/L, is a frequent consequence of chronic kidney disease (CKD) and occurs in ~10-30% of patients with advanced stages of CKD. Likewise, in patients with a kidney transplant, prevalence rates of metabolic acidosis range from 20% to 50%. CKD has recently been associated with cognitive dysfunction, including mild cognitive impairment with memory and attention deficits, reduced executive functions and morphological damage detectable with imaging. Also, impaired motor functions and loss of muscle strength are often found in patients with advanced CKD, which in part may be attributed to altered central nervous system (CNS) functions. While the exact mechanisms of how CKD may cause cognitive dysfunction and reduced motor functions are still debated, recent data point towards the possibility that acidosis is one modifiable contributor to cognitive dysfunction. This review summarizes recent evidence for an association between acidosis and cognitive dysfunction in patients with CKD and discusses potential mechanisms by which acidosis may impact CNS functions. The review also identifies important open questions to be answered to improve prevention and therapy of cognitive dysfunction in the setting of metabolic acidosis in patients with CKD.


Assuntos
Acidose , Disfunção Cognitiva , Transtornos Motores , Insuficiência Renal Crônica , Acidose/etiologia , Bicarbonatos , Disfunção Cognitiva/etiologia , Humanos , Transtornos Motores/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA