Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Blood ; 142(22): 1879-1894, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-37738652

RESUMO

The use of Bruton tyrosine kinase inhibitors, such as ibrutinib, to block B-cell receptor signaling has achieved a remarkable clinical response in several B-cell malignancies, including mantle cell lymphoma (MCL) and diffuse large B-cell lymphoma (DLBCL). Acquired drug resistance, however, is significant and affects the long-term survival of these patients. Here, we demonstrate that the transcription factor early growth response gene 1 (EGR1) is involved in ibrutinib resistance. We found that EGR1 expression is elevated in ibrutinib-resistant activated B-cell-like subtype DLBCL and MCL cells and can be further upregulated upon ibrutinib treatment. Genetic and pharmacological analyses revealed that overexpressed EGR1 mediates ibrutinib resistance. Mechanistically, TCF4 and EGR1 self-regulation induce EGR1 overexpression that mediates metabolic reprogramming to oxidative phosphorylation (OXPHOS) through the transcriptional activation of PDP1, a phosphatase that dephosphorylates and activates the E1 component of the large pyruvate dehydrogenase complex. Therefore, EGR1-mediated PDP1 activation increases intracellular adenosine triphosphate production, leading to sufficient energy to enhance the proliferation and survival of ibrutinib-resistant lymphoma cells. Finally, we demonstrate that targeting OXPHOS with metformin or IM156, a newly developed OXPHOS inhibitor, inhibits the growth of ibrutinib-resistant lymphoma cells both in vitro and in a patient-derived xenograft mouse model. These findings suggest that targeting EGR1-mediated metabolic reprogramming to OXPHOS with metformin or IM156 provides a potential therapeutic strategy to overcome ibrutinib resistance in relapsed/refractory DLBCL or MCL.


Assuntos
Antineoplásicos , Linfoma Difuso de Grandes Células B , Linfoma de Célula do Manto , Metformina , Humanos , Adulto , Animais , Camundongos , Tirosina Quinase da Agamaglobulinemia/metabolismo , Fosforilação Oxidativa , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Antineoplásicos/uso terapêutico , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/patologia , Linfoma Difuso de Grandes Células B/patologia , Metformina/farmacologia , Proteína 1 de Resposta de Crescimento Precoce/metabolismo
2.
Stem Cells ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597671

RESUMO

Although mesenchymal stromal cell (MSC) based therapies hold promise in regenerative medicine, their clinical application remains challenging due to issues such as immunocompatibility. MSC-derived exosomes are a promising off-the-shelf therapy for promoting wound healing in a cell-free manner. However, the potential to customize the content of MSC-exosomes, and understanding how such modifications influence exosome effects on tissue regeneration remain underexplored. In this study, we used an in vitro system to compare the priming of human MSCs by two inflammatory inducers TNF-α and CRX-527 (a highly potent synthetic TLR4 agonist that can be used as a vaccine adjuvant or to induce anti-tumor immunity) on exosome molecular cargo, as well as on an in vivo rat ligament injury model to validate exosome potency. Different microenvironmental stimuli used to prime MSCs in vitro affected their exosomal microRNAs and mRNAs, influencing ligament healing. Exosomes derived from untreated MSCs significantly enhance the mechanical properties of healing ligaments, in contrast to those obtained from MSCs primed with inflammation-inducers, which not only fail to provide any improvement but also potentially deteriorate the mechanical properties. Additionally, a link was identified between altered exosomal microRNA levels and expression changes in microRNA targets in ligaments. These findings elucidate the nuanced interplay between MSCs, their exosomes, and tissue regeneration.

3.
Cytotherapy ; 25(6): 670-682, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36849306

RESUMO

BACKGROUND AIMS: Chimeric antigen receptor (CAR) T cells have demonstrated remarkable efficacy against hematological malignancies; however, they have not experienced the same success against solid tumors such as glioblastoma (GBM). There is a growing need for high-throughput functional screening platforms to measure CAR T-cell potency against solid tumor cells. METHODS: We used real-time, label-free cellular impedance sensing to evaluate the potency of anti-disialoganglioside (GD2) targeting CAR T-cell products against GD2+ patient-derived GBM stem cells over a period of 2 days and 7 days in vitro. We compared CAR T products using two different modes of gene transfer: retroviral transduction and virus-free CRISPR-editing. Endpoint flow cytometry, cytokine analysis and metabolomics data were acquired and integrated to create a predictive model of CAR T-cell potency. RESULTS: Results indicated faster cytolysis by virus-free CRISPR-edited CAR T cells compared with retrovirally transduced CAR T cells, accompanied by increased inflammatory cytokine release, CD8+ CAR T-cell presence in co-culture conditions and CAR T-cell infiltration into three-dimensional GBM spheroids. Computational modeling identified increased tumor necrosis factor α concentrations with decreased glutamine, lactate and formate as being most predictive of short-term (2 days) and long-term (7 days) CAR T cell potency against GBM stem cells. CONCLUSIONS: These studies establish impedance sensing as a high-throughput, label-free assay for preclinical potency testing of CAR T cells against solid tumors.


Assuntos
Glioblastoma , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Linfócitos T CD8-Positivos , Anticorpos , Citocinas , Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T
4.
J Pediatr Hematol Oncol ; 44(3): e770-e774, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34862354

RESUMO

A 6-year-old female presenting with an abdominal mass was found to have an unresectable undifferentiated sarcoma. The tumor did not respond to multiagent chemotherapy. However, molecular testing identified an NTRK3-fusion, and treatment was changed to larotrectinib monotherapy. Following 6 months of therapy, the patient achieved a very good partial response with 96% reduction in tumor size. She underwent proton beam radiation therapy with continued larotrectinib therapy and achieved a complete response. This case report shows that an NTRK fusion positive undifferentiated sarcoma can be safely treated with larotrectinib and radiation therapy and highlights the importance of early molecular testing.


Assuntos
Neuroblastoma , Sarcoma , Neoplasias de Tecidos Moles , Criança , Feminino , Humanos , Neuroblastoma/tratamento farmacológico , Proteínas de Fusão Oncogênica/genética , Prótons , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Sarcoma/tratamento farmacológico , Sarcoma/genética , Sarcoma/radioterapia , Neoplasias de Tecidos Moles/patologia
5.
Liver Transpl ; 27(11): 1577-1591, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34118129

RESUMO

Normothermic ex vivo liver perfusion (NEVLP) is a novel system for organ preservation that may improve over static cold storage clinically and offers the chance for graft modification prior to transplantation. Although recent studies have shown the presence of inflammatory molecules during perfusion, none have yet shown the effects of NEVLP on liver-resident immune cell activation. We investigated the effects of NEVLP on liver-resident immune cell activation and assessed the ability of anti-inflammatory cytokines interleukin 10 (IL10) and transforming growth factor ß (TGF-ß) to improve organ function and reduce immune activation during perfusion. Rat livers were perfused for 4 hours at 37°C with or without the addition of 20 ng/mL of each IL10 and TGF-ß (n = 7). Naïve and cold storage (4 hours at 4°C) livers served as controls (n = 4). Following preservation, gene expression profiles were assessed through single-cell RNA sequencing; dendritic cell and macrophage activation was measured by flow cytometry; and cytokine production was assessed by enzyme-linked immunosorbent assay. NEVLP induced a global inflammatory gene expression signature, most notably in liver-resident macrophages and dendritic cells, which was accompanied by an increase in cell-surface levels of major histocompatibility complex (MHC) II, CD40, and CD86. Immune activation was partially ameliorated by IL10 and TGF-ß treatment, but no changes were observed in inflammatory cytokine production. Overall levels of liver damage and cellular apoptosis from perfusion were low, and liver function was improved with IL10 and TGF-ß treatment. This is the first study to demonstrate that liver-resident immune cells gain an activated phenotype during NEVLP on both the gene and protein level and that this activation can be reduced through therapeutic intervention with IL10 and TGF-ß.


Assuntos
Transplante de Fígado , Traumatismo por Reperfusão , Animais , Citocinas , Interleucina-10 , Fígado , Preservação de Órgãos , Perfusão , Ratos , Fator de Crescimento Transformador beta , Fatores de Crescimento Transformadores
6.
NMR Biomed ; 34(12): e4600, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34409665

RESUMO

Natural killer (NK) cell therapies are being increasingly used as an adoptive cell therapy for cancer because they can recognize tumor cells in an antigen-independent manner. While promising, the understanding of NK cell persistence, particularly within a harsh tumor microenvironment, is limited. Fluorine-19 (19 F) MRI is a noninvasive imaging modality that has shown promise in longitudinally tracking cell populations in vivo; however, it has not been studied on murine NK cells. In this study, the impact of 19 F labeling on murine NK cell viability and function was assessed in vitro and then used to quantify NK cell persistence in vivo. While there was no noticeable impact on viability, labeling NK cells with 19 F did attenuate cytotoxicity against lymphoma cells in vitro. Fluorescent microscopy verified 19 F labeling in both the cytoplasm and nucleus of NK cells. Lymphoma-bearing mice were given intratumoral injections of 19 F-labeled NK cells in which signal was detectable across the 6 day observation period via 19 F MRI. Quantification from the composite images detected 78-94% of the initially injected NK cells across 6 days, with a significant decrease between Days 3 and 6. Postmortem flow cytometry demonstrated retention of 19 F intracellularly within adoptively transferred NK cells with less than 1% of 19 F-containing cells identified as tumor-associated macrophages that presumably ingested nonviable NK cells. This work demonstrates that 19 F MRI offers a specific imaging platform to track and quantify murine NK cells within tumors noninvasively.


Assuntos
Células Matadoras Naturais/imunologia , Linfoma/imunologia , Imageamento por Ressonância Magnética/métodos , Animais , Citometria de Fluxo , Linfoma/diagnóstico por imagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada
7.
J Proteome Res ; 19(7): 2606-2616, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32396724

RESUMO

The use of mass spectrometry for protein identification and quantification in cerebrospinal fluid (CSF) is at the forefront of research efforts to identify and explore biomarkers for the early diagnosis and prognosis of neurologic disorders. Here we implemented a 4-plex N,N-dimethyl leucine (DiLeu) isobaric labeling strategy in a longitudinal study aiming to investigate protein dynamics in children with B-cell acute lymphoblastic leukemia (B-cell ALL) undergoing chemotherapy. The temporal profile of CSF proteome during chemotherapy treatment at weeks 5, 10-14, and 24-28 highlighted many differentially expressed proteins, such as neural cell adhesion molecule, neuronal growth regulator 1, and secretogranin-3, all of which play important roles in neurodegenerative diseases. A total of 63 proteins were significantly altered across all of the time points investigated. The most over-represented biological processes from gene ontology analysis included platelet degranulation, complement activation, cell adhesion, fibrinolysis, neuron projection, regeneration, and regulation of neuron death. We expect that results from this and future studies will provide a means to monitor neurotoxicity and develop strategies to prevent central nervous system injury in response to chemotherapy in children.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteômica , Linfócitos B , Criança , Humanos , Leucina , Estudos Longitudinais , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Espectrometria de Massas em Tandem
8.
Cytotherapy ; 22(8): 450-457, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32536506

RESUMO

BACKGROUND AIMS: Several methods to expand and activate (EA) NK cells ex vivo have been developed for the treatment of relapsed or refractory cancers. Infusion of fresh NK cells is generally preferred to the infusion of cryopreserved/thawed (C/T) NK cells because of concern that cryopreservation diminishes NK cell activity. However, there has been little head-to-head comparison of the functionality of fresh versus C/T NK cell products. METHODS: We evaluated activity of fresh and C/T EA NK cells generated by interleukin (IL)-15, IL-2 and CD137L expansion. RESULTS: Analysis of C/T NK cell products demonstrated decreased recovery of viable CD56+ cells, but the proportion of NK cells in the C/T EA NK cell product did not decrease compared with the fresh EA NK cell product. Fresh and C/T EA NK cells demonstrated increased granzyme B compared with NK cells pre-expansion, but only fresh EA NK cells showed increased NKG2D. Compared with fresh EA NK cells, cytotoxic ability of C/T EA NK cells was reduced, but C/T EA NK cells remained potently cytotoxic against tumor cells via both antibody-independent and antibody-dependent mechanisms within 4 h post-thaw. Fresh EA NK cells generated high levels of gamma interferon (IFN-γ), which was abrogated by JAK1/JAK2 inhibition with ruxolitinib, but C/T EA NK cells showed lower IFN-γ unaffected by JAK1/JAK2 inhibition. DISCUSSION: Usage of C/T EA NK cells may be an option to provide serial "boost" NK cell infusions from a single apheresis to maximize NK cell persistence and potentially improve NK-induced responses to refractory cancer.


Assuntos
Técnicas de Cultura de Células/métodos , Criopreservação , Células Matadoras Naturais/citologia , Ativação Linfocitária/imunologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citotoxicidade Imunológica/efeitos dos fármacos , Granzimas/metabolismo , Humanos , Interferon gama/metabolismo , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Ativação Linfocitária/efeitos dos fármacos , Contagem de Linfócitos , Subpopulações de Linfócitos/citologia , Subpopulações de Linfócitos/efeitos dos fármacos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Nitrilas , Pirazóis/farmacologia , Pirimidinas
9.
J Pediatr Hematol Oncol ; 42(2): 145-148, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30676436

RESUMO

Hepatic sinusoidal obstruction syndrome (SOS) remains a serious complication of hematopoietic stem cell transplantation (HSCT). In this single institution retrospective case series, 18 children developed SOS after HSCT. Patients were treated with antithrombin III (ATIII), defibrotide, or ATIII followed by defibrotide. Twelve of 13 patients who were treated with ATIII therapy alone had complete resolution of SOS, including 4 of 5 children with severe SOS. In this limited cohort, ATIII was safe and successfully prevented progression of hepatic SOS following HSCT in the majority of children at our center.


Assuntos
Antitrombina III/uso terapêutico , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Hepatopatia Veno-Oclusiva/tratamento farmacológico , Criança , Seguimentos , Hepatopatia Veno-Oclusiva/etiologia , Hepatopatia Veno-Oclusiva/patologia , Humanos , Prognóstico , Estudos Retrospectivos
10.
Biol Blood Marrow Transplant ; 25(11): 2124-2133, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31394269

RESUMO

In the setting of radiation-induced trauma, exposure to high levels of radiation can cause an acute radiation syndrome (ARS) causing bone marrow (BM) failure, leading to life-threatening infections, anemia, and thrombocytopenia. We have previously shown that human macrophages educated with human mesenchymal stem cells (MSCs) by coculture can significantly enhance survival of mice exposed to lethal irradiation. In this study, we investigated whether exosomes isolated from MSCs could replace direct coculture with MSCs to generate exosome educated macrophages (EEMs). Functionally unique phenotypes were observed by educating macrophages with exosomes from MSCs (EEMs) primed with bacterial lipopolysaccharide (LPS) at different concentrations (LPS-low EEMs or LPS-high EEMs). LPS-high EEMs were significantly more effective than uneducated macrophages, MSCs, EEMs, or LPS-low EEMs in extending survival after lethal ARS in vivo. Moreover, LPS-high EEMs significantly reduced clinical signs of radiation injury and restored hematopoietic tissue in the BM and spleen as determined by complete blood counts and histology. LPS-high EEMs showed significant increases in gene expression of STAT3, secretion of cytokines like IL-10 and IL-15, and production of growth factors like FLT-3L. LPS-EEMs also showed increased phagocytic activity, which may aid with tissue remodeling. LPS-high EEMs have the potential to be an effective cellular therapy for the management of ARS.


Assuntos
Síndrome Aguda da Radiação/terapia , Exossomos/transplante , Hematopoese , Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Lesões Experimentais por Radiação/terapia , Síndrome Aguda da Radiação/metabolismo , Síndrome Aguda da Radiação/patologia , Animais , Exossomos/metabolismo , Exossomos/patologia , Feminino , Humanos , Lipopolissacarídeos/farmacologia , Macrófagos/patologia , Masculino , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Endogâmicos NOD , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/patologia
12.
J Pediatr Hematol Oncol ; 40(1): e50-e54, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28375943

RESUMO

Extrarenal malignant rhabdoid tumors (MRT) have a poor prognosis despite aggressive therapy. Adding high-dose chemotherapy with autologous stem cell rescue (HDC-ASCR) as consolidative therapy for MRT is controversial. We describe 2 patients, age 13 years and 19 months, with unresectable neck MRT. After chemotherapy and radiotherapy, both underwent HDC-ASCR and remain in remission over 4 years later. We reviewed all published cases of neck MRT, and found poorer outcomes and more variable age of presentation and time to progression than MRT at other sites. Neck MRT may represent a higher-risk subset of MRT, and addition of HDC-ASCR merits consideration.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias de Cabeça e Pescoço/terapia , Transplante de Células-Tronco Hematopoéticas/métodos , Tumor Rabdoide/terapia , Adolescente , Quimioterapia de Consolidação , Feminino , Humanos , Lactente , Masculino , Indução de Remissão , Transplante Autólogo
13.
Biol Blood Marrow Transplant ; 23(6): 897-905, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28257800

RESUMO

Mesenchymal stem cells (MSCs) have immunosuppressive and tissue repair properties, but clinical trials using MSCs to prevent or treat graft-versus-host disease (GVHD) have shown mixed results. Macrophages (MØs) are important regulators of immunity and can promote tissue regeneration and remodeling. We have previously shown that MSCs can educate MØs toward a unique anti-inflammatory immunophenotype (MSC-educated MØs [MEMs]); however, their implications for in vivo models of inflammation have not been studied yet. We now show that in comparison with MØs, MEMs have increased expression of the inhibitory molecules PD-L1, PD-L2, in addition to markers of alternatively activated MØs: CD206 and CD163. RNA-Seq analysis of MEMs, as compared with MØs, show a distinct gene expression profile that positively correlates with multiple pathways important in tissue repair. MEMs also show increased expression of IL-6, transforming growth factor-ß, arginase-1, CD73, and decreased expression of IL-12 and tumor necrosis factor-α. We show that IL-6 secretion is controlled in part by the cyclo-oxygenase-2, arginase, and JAK1/STAT1 pathway. When tested in vivo, we show that human MEMs significantly enhance survival from lethal GVHD and improve survival of mice from radiation injury. We show these effects could be mediated in part through suppression of human T cell proliferation and may have attenuated host tissue injury in part by enhancing murine fibroblast proliferation. MEMs are a unique MØ subset with therapeutic potential for the management of GVHD and/or protection from radiation-induced injury.


Assuntos
Comunicação Celular/imunologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Doença Enxerto-Hospedeiro/terapia , Macrófagos/imunologia , Células-Tronco Mesenquimais/imunologia , Lesões por Radiação/terapia , Animais , Humanos , Inflamação/imunologia , Interleucina-6/biossíntese , Ativação de Macrófagos/imunologia , Macrófagos/citologia , Células-Tronco Mesenquimais/citologia , Camundongos
14.
Blood ; 124(12): 1976-86, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25079358

RESUMO

Selective targeting of non-T cells, including antigen-presenting cells (APCs), is a potential strategy to prevent graft-versus-host-disease (GVHD) but to maintain graft-versus-tumor (GVT) effects. Because type I and II interferons signal through signal transducer and activator of transcription-1 (STAT1), and contribute to activation of APCs after allogeneic bone marrow transplant (alloBMT), we examined whether the absence of STAT1 in donor APCs could prevent GVHD while preserving immune competence. Transplantation of STAT1(-/-) bone marrow (BM) prevented GVHD induced by STAT1(+/+) T cells, leading to expansion of B220(+) cells and regulatory T cells. STAT1(-/-) BM also preserved GVT activity and enhanced overall survival of tumor-challenged mice in the setting of GVHD. Furthermore, recipients of allogeneic STAT1(-/-) BM demonstrated increased CD9(-)Siglec H(hi) plasmacytoid dendritic cells (pDCs), and depletion of pDCs after STAT1(-/-) BM transplantation prevented GVHD resistance. STAT1(-/-) pDCs were found to produce decreased free radicals, IFNα, and interleukin (IL)-12, and increased IL-10. Additionally, STAT1(-/-) pDCs that were isolated after alloBMT showed increased gene expression of S100A8 and S100A9, and transplantation of S100A9(-/-) BM reduced GVHD-free survival. Finally, elevated STAT3 was found in STAT1(-/-) pDCs isolated after alloBMT. We conclude that interfering with interferon signaling in APCs such as pDCs provides a novel approach to regulate the GVHD/GVT axis.


Assuntos
Células Dendríticas/metabolismo , Células Dendríticas/transplante , Doença Enxerto-Hospedeiro/prevenção & controle , Fator de Transcrição STAT1/deficiência , Fator de Transcrição STAT3/metabolismo , Aloenxertos , Animais , Transplante de Medula Óssea/efeitos adversos , Calgranulina A/genética , Calgranulina B/genética , Calgranulina B/metabolismo , Células Dendríticas/imunologia , Feminino , Expressão Gênica , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/metabolismo , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fator de Transcrição STAT1/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Doadores de Tecidos
15.
J Immunol ; 190(3): 1351-9, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23275602

RESUMO

Tumor-targeted vaccines represent a strategy to enhance the graft-versus-leukemia effect after allogeneic blood and marrow transplantation (BMT). We have previously shown that graft-versus-host disease (GVHD) can negatively impact quantitative responses to vaccines. Using a minor histocompatibility Ag-mismatched BMT (B6 → B6 × C3H.SW) followed by adoptive transfer of HY-specific T cells and HY-expressing dendritic cells, we assessed whether GVHD induced by donor lymphocyte infusion (DLI) affects the persistence, proliferation, and survival of vaccine-responding, nonalloantigen reactive T cells. Both CD8(+) and CD4(+) HY-specific T cells undergo less vaccine-driven proliferation in allogeneic recipients with GVHD. Although vaccine-responding CD8(+) T cells show decreased IFN-γ and CD107a production, CD4(+) T cells exhibit increased programmed death 1 and T cell Ig mucin-like domain 3 expression. In addition, the degree of apoptosis in vaccine-responding CD8(+) T cells was higher in the presence of GVHD, but there was no difference in CD4(+) T cell apoptosis. Using Fas ligand-deficient or TRAIL-deficient DLI had no impact on apoptosis of HY-specific T cells. However, perforin-deficient alloreactive DLI induced significantly less apoptosis of vaccine-responding CD8(+) T cells and resulted in enhanced tumor protection. Thus, diminished vaccine responses during GVHD result from impaired proliferation of CD8(+) and CD4(+) T cells responding to vaccination, with an additional contribution from perforin-mediated CD8(+) T cell apoptosis. These results provide important insights toward optimizing vaccine responses after allogeneic BMT.


Assuntos
Apoptose/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Doença Enxerto-Hospedeiro/imunologia , Imunoterapia , Proteínas Citotóxicas Formadoras de Poros/fisiologia , Subpopulações de Linfócitos T/imunologia , Vacinação , Transferência Adotiva , Animais , Animais Congênicos , Vacinas Anticâncer/uso terapêutico , Carcinoma de Células de Transição/imunologia , Carcinoma de Células de Transição/patologia , Carcinoma de Células de Transição/terapia , Divisão Celular , Técnicas de Cocultura , Proteína Ligante Fas/deficiência , Proteína Ligante Fas/imunologia , Feminino , Antígeno H-Y/imunologia , Epitopos Imunodominantes/imunologia , Transfusão de Linfócitos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antígenos de Histocompatibilidade Menor/imunologia , Quimera por Radiação , Organismos Livres de Patógenos Específicos , Ligante Indutor de Apoptose Relacionado a TNF/deficiência , Ligante Indutor de Apoptose Relacionado a TNF/imunologia
16.
J Pediatr Hematol Oncol ; 37(2): 79-93, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25590232

RESUMO

The past decade has seen several anticancer immunotherapeutic strategies transition from "promising preclinical models" to treatments with proven clinical activity or benefit. In 2013, the journal Science selected the field of Cancer Immunotherapy as the overall number-1 breakthrough for the year in all of scientific research. In the setting of cancer immunotherapy for adult malignancies, many of these immunotherapy strategies have relied on the cancer patient's endogenous antitumor T-cell response. Although much promising research in pediatric oncology is similarly focused on T-cell reactivity, several pediatric malignancies themselves, or the chemo-radiotherapy used to achieve initial responses, can be associated with profound immune suppression, particularly of the T-cell system. A separate component of the immune system, also able to mediate antitumor effects and less suppressed by conventional cancer treatment, is the NK-cell system. In recent years, several distinct immunotherapeutic approaches that rely on the activity of NK cells have moved from preclinical development into clinical testing, and some have shown clear antitumor benefit. This review provides an overview of NK cell-based immunotherapy efforts that are directed toward childhood malignancies, with an emphasis on protocols that are already in clinical testing.


Assuntos
Imunoterapia , Células Matadoras Naturais/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Adulto , Criança , Humanos , Prognóstico
17.
Biol Blood Marrow Transplant ; 20(1): 26-36, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24141010

RESUMO

The clinical success of allogeneic T cell therapy for cancer relies on the selection of antigens that can effectively elicit antitumor responses with minimal toxicity toward nonmalignant tissues. Although minor histocompatibility antigens (MiHA) represent promising targets, broad expression of these antigens has been associated with poor responses and T cell dysfunction that may not be prevented by targeting MiHA with limited expression. In this study, we hypothesized that antitumor activity of MiHA-specific CD8 T cells after allogeneic bone marrow transplantation (BMT) is determined by the distribution of antigen relative to the site of tumor growth. To test this hypothesis, we utilized the clinically relevant male-specific antigen HY and studied the fate of adoptively transferred, HY-CD8(+) T cells (HY-CD8) against a HY-expressing epithelial tumor (MB49) and pre-B cell leukemia (HY-E2APBX ALL) in BMT recipients. Transplants were designed to produce broad HY expression in nonhematopoietic tissues (female → male BMT, [F → M]), restricted HY expression in hematopoietic tissues (male → female BMT, [M → F]) tissues, and no HY tissue expression (female → female BMT, [F → F]). Broad HY expression induced poor responses to MB49 despite sublethal graft-versus-host disease and accumulation of HY-CD8 in secondary lymphoid tissues. Antileukemia responses, however, were preserved. In contrast, restriction of HY expression to hematopoietic tissues restored MB49 responses but resulted in a loss of antileukemia responses. We concluded that target alloantigen expression in the same compartment of tumor growth impairs CD8 responses to both solid and hematologic tumors.


Assuntos
Transplante de Medula Óssea , Linfócitos T CD8-Positivos/imunologia , Doença Enxerto-Hospedeiro/imunologia , Efeito Enxerto vs Leucemia , Antígeno H-Y/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/imunologia , Transferência Adotiva , Alelos , Animais , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/transplante , Proliferação de Células , Células Dendríticas/imunologia , Células Dendríticas/patologia , Feminino , Expressão Gênica/imunologia , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/mortalidade , Doença Enxerto-Hospedeiro/patologia , Antígeno H-Y/genética , Humanos , Imunofenotipagem , Depleção Linfocítica , Masculino , Camundongos , Camundongos Transgênicos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/mortalidade , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Células Precursoras de Linfócitos B/imunologia , Células Precursoras de Linfócitos B/patologia , Análise de Sobrevida
18.
Future Oncol ; 10(9): 1659-78, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25145434

RESUMO

Novel immune-based therapies are becoming available as additions to, and in some cases as alternatives to, the traditional treatment modalities such as chemotherapy, surgery and radiation that have improved outcomes for childhood cancer for decades. In this article, we will discuss what immunotherapies are being tested in the clinic, barriers to widespread application, and the future of immuno-oncology for childhood cancer. While in many cases, these therapies have shown dramatic responses in the setting of refractory or relapsed cancer, much remains to be learned about how to integrate these therapies into existing upfront regimens. The progress and challenges of developing immunotherapies for childhood cancer in a timely and cost-effective fashion will be discussed.


Assuntos
Imunoterapia , Neoplasias/terapia , Vacinas Anticâncer , Criança , Humanos , Neoplasias/imunologia , Pediatria
19.
bioRxiv ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38405747

RESUMO

Natural killer (NK) cells are an appealing off-the-shelf, allogeneic cellular therapy due to their cytotoxic profile. However, their activity against solid tumors remains suboptimal in part due to the upregulation of NK-inhibitory ligands, such as HLA-E, within the tumor microenvironment. Here, we utilize CRISPR-Cas9 to disrupt the KLRC1 gene (encoding the HLA-E-binding NKG2A receptor) and perform non-viral insertion of a GD2-targeting chimeric antigen receptor (CAR) within NK cells isolated from human peripheral blood. Genome editing with CRISPR/Cas9 ribonucleoprotein complexes yields efficient genomic disruption of the KLRC1 gene with 98% knockout efficiency and specific knock-in of the GD2 CAR transgene as high as 23%, with minimal off-target activity as shown by CHANGE-Seq, in-out PCR, and next generation sequencing. KLRC1 -GD2 CAR NK cells display high viability and proliferation, as well as precise cellular targeting and potency against GD2 + human melanoma cells. Notably, KLRC1 -GD2 CAR NK cells overcome HLA-E-based inhibition by HLA-E-expressing, GD2 + melanoma cells. Using a single-step, virus-free genome editing workflow, this study demonstrates the feasibility of precisely disrupting inhibitory signaling within NK cells via CRISPR/Cas9 while expressing a CAR to generate potent allogeneic cell therapies against HLA-E + solid tumors.

20.
Front Bioeng Biotechnol ; 12: 1379900, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38882639

RESUMO

Efficient engineering of T cells to express exogenous tumor-targeting receptors such as chimeric antigen receptors (CARs) or T-cell receptors (TCRs) is a key requirement of effective adoptive cell therapy for cancer. Genome editing technologies, such as CRISPR/Cas9, can further alter the functional characteristics of therapeutic T cells through the knockout of genes of interest while knocking in synthetic receptors that can recognize cancer cells. Performing multiple rounds of gene transfer with precise genome editing, termed multiplexing, remains a key challenge, especially for non-viral delivery platforms. Here, we demonstrate the efficient production of primary human T cells incorporating the knockout of three clinically relevant genes (B2M, TRAC, and PD1) along with the non-viral transfection of a CAR targeting disialoganglioside GD2. Multiplexed knockout results in high on-target deletion for all three genes, with low off-target editing and chromosome alterations. Incorporating non-viral delivery to knock in a GD2-CAR resulted in a TRAC-B2M-PD1-deficient GD2 CAR T-cell product with a central memory cell phenotype and high cytotoxicity against GD2-expressing neuroblastoma target cells. Multiplexed gene-editing with non-viral delivery by CRISPR/Cas9 is feasible and safe, with a high potential for rapid and efficient manufacturing of highly potent allogeneic CAR T-cell products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA