Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Mol Cancer ; 16(1): 67, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28327152

RESUMO

BACKGROUND: TRIM8 plays a key role in controlling the p53 molecular switch that sustains the transcriptional activation of cell cycle arrest genes and response to chemotherapeutic drugs. The mechanisms that regulate TRIM8, especially in cancers like clear cell Renal Cell Carcinoma (ccRCC) and colorectal cancer (CRC) where it is low expressed, are still unknown. However, recent studies suggest the potential involvement of some microRNAs belonging to miR-17-92 and its paralogous clusters, which could include TRIM8 in a more complex pathway. METHODS: We used RCC and CRC cell models for in-vitro experiments, and ccRCC patients and xenograft transplanted mice for in vivo assessments. To measure microRNAs levels we performed RT-qPCR, while steady-states of TRIM8, p53, p21 and N-MYC were quantified at protein level by Western Blotting as well as at transcript level by RT-qPCR. Luciferase reporter assays were performed to assess the interaction between TRIM8 and specific miRNAs, and the potential effects of this interaction on TRIM8 expression. Moreover, we treated our cell models with conventional chemotherapeutic drugs or tyrosine kinase inhibitors, and measured their response in terms of cell proliferation by MTT and colony suppression assays. RESULTS: We showed that TRIM8 is a target of miR-17-5p and miR-106b-5p, whose expression is promoted by N-MYC, and that alterations of their levels affect cell proliferation, acting on the TRIM8 transcripts stability, as confirmed in ccRCC patients and cell lines. In addition, reducing the levels of miR-17-5p/miR-106b-5p, we increased the chemo-sensitivity of RCC/CRC-derived cells to anti-tumour drugs used in the clinic. Intriguingly, this occurs, on one hand, by recovering the p53 tumour suppressor activity in a TRIM8-dependent fashion and, on the other hand, by promoting the transcription of miR-34a that turns off the oncogenic action of N-MYC. This ultimately leads to cell proliferation reduction or block, observed also in colon cancer xenografts overexpressing TRIM8. CONCLUSIONS: In this paper we provided evidence that TRIM8 and its regulators miR-17-5p and miR-106b-5 participate to a feedback loop controlling cell proliferation through the reciprocal modulation of p53, miR-34a and N-MYC. Our experiments pointed out that this axis is pivotal in defining drug responsiveness of cancers such ccRCC and CRC.


Assuntos
Proteínas de Transporte/genética , Resistencia a Medicamentos Antineoplásicos/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Proteínas do Tecido Nervoso/genética , Proteína Supressora de Tumor p53/genética , Regiões 3' não Traduzidas , Animais , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Proteínas de Transporte/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , MicroRNAs/genética , Proteínas do Tecido Nervoso/metabolismo , Interferência de RNA , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
BMC Bioinformatics ; 17(Suppl 12): 345, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-28185579

RESUMO

BACKGROUND: When the reads obtained from high-throughput RNA sequencing are mapped against a reference database, a significant proportion of them - known as multireads - can map to more than one reference sequence. These multireads originate from gene duplications, repetitive regions or overlapping genes. Removing the multireads from the mapping results, in RNA-Seq analyses, causes an underestimation of the read counts, while estimating the real read count can lead to false positives during the detection of differentially expressed sequences. RESULTS: We present an innovative approach to deal with multireads and evaluate differential expression events, entirely based on fuzzy set theory. Since multireads cause uncertainty in the estimation of read counts during gene expression computation, they can also influence the reliability of differential expression analysis results, by producing false positives. Our method manages the uncertainty in gene expression estimation by defining the fuzzy read counts and evaluates the possibility of a gene to be differentially expressed with three fuzzy concepts: over-expression, same-expression and under-expression. The output of the method is a list of differentially expressed genes enriched with information about the uncertainty of the results due to the multiread presence. We have tested the method on RNA-Seq data designed for case-control studies and we have compared the obtained results with other existing tools for read count estimation and differential expression analysis. CONCLUSIONS: The management of multireads with the use of fuzzy sets allows to obtain a list of differential expression events which takes in account the uncertainty in the results caused by the presence of multireads. Such additional information can be used by the biologists when they have to select the most relevant differential expression events to validate with laboratory assays. Our method can be used to compute reliable differential expression events and to highlight possible false positives in the lists of differentially expressed genes computed with other tools.


Assuntos
Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , RNA/genética , Sequenciamento de Nucleotídeos em Larga Escala , Reprodutibilidade dos Testes , Análise de Sequência de RNA/métodos , Software
3.
BMC Genomics ; 14: 855, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24308330

RESUMO

BACKGROUND: Recent studies have demonstrated an unexpected complexity of transcription in eukaryotes. The majority of the genome is transcribed and only a little fraction of these transcripts is annotated as protein coding genes and their splice variants. Indeed, most transcripts are the result of antisense, overlapping and non-coding RNA expression. In this frame, one of the key aims of high throughput transcriptome sequencing is the detection of all RNA species present in the cell and the first crucial step for RNA-seq users is represented by the choice of the strategy for cDNA library construction. The protocols developed so far provide the utilization of the entire library for a single sequencing run with a specific platform. RESULTS: We set up a unique protocol to generate and amplify a strand-specific cDNA library representative of all RNA species that may be implemented with all major platforms currently available on the market (Roche 454, Illumina, ABI/SOLiD). Our method is reproducible, fast, easy-to-perform and even allows to start from low input total RNA. Furthermore, we provide a suitable bioinformatics tool for the analysis of the sequences produced following this protocol. CONCLUSION: We tested the efficiency of our strategy, showing that our method is platform-independent, thus allowing the simultaneous analysis of the same sample with different NGS technologies, and providing an accurate quantitative and qualitative portrait of complex whole transcriptomes.


Assuntos
Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de RNA/métodos , Transcriptoma , Animais , Linhagem Celular Tumoral , Mapeamento Cromossômico , Etiquetas de Sequências Expressas , Regulação da Expressão Gênica , Xenoenxertos , Humanos , Camundongos , Anotação de Sequência Molecular
4.
Nucleic Acids Res ; 37(18): 6092-104, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19700772

RESUMO

p63 belongs to a family of transcription factors, which, while demonstrating striking conservation of functional domains, regulate distinct biological functions. Its principal role is in the regulation of epithelial commitment, differentiation and maintenance programs, during embryogenesis and in adult tissues. The p63 gene has a complex transcriptional pattern, producing two subclasses of N-terminal isoforms (TA and DeltaN) which are alternatively spliced at the C-terminus. Here, we report the identification of two new C-terminus p63 variants, we named p63 delta and epsilon, that increase from 6 to 10 the number of the p63 isoforms. Expression analysis of all p63 variants demonstrates a tissue/cell-type-specific nature of p63 alternative transcript expression, probably related to their different cellular functions. We demonstrate that the new p63 variants as DeltaN isoforms are active as transcription factors as they have nuclear localization and can modulate the expression of p63 target genes. Moreover, we report that, like DeltaNp63alpha, DeltaNp63delta and epsilon sustain cellular proliferation and that their expression decreases during keratinocyte differentiation, suggesting their involvement in this process. Taken together, our results demonstrate the existence of novel p63 proteins whose expression should be considered in future studies on the roles of p63 in the regulation of cellular functions.


Assuntos
Transativadores/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Algoritmos , Processamento Alternativo , Sequência de Aminoácidos , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Células Cultivadas , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Dados de Sequência Molecular , Proteínas Nucleares/análise , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transativadores/genética , Fatores de Transcrição , Transcrição Gênica , Ativação Transcricional , Proteínas Supressoras de Tumor/genética
5.
Biomedicines ; 9(3)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673719

RESUMO

Colorectal cancer (CRC) represents one of the most widespread forms of cancer in the population and, as all malignant tumors, often develops resistance to chemotherapies with consequent tumor growth and spreading leading to the patient's premature death. For this reason, a great challenge is to identify new therapeutic targets, able to restore the drugs sensitivity of cancer cells. In this review, we discuss the role of TRIpartite Motifs (TRIM) proteins in cancers and in CRC chemoresistance, focusing on the tumor-suppressor role of TRIM8 protein in the reactivation of the CRC cells sensitivity to drugs currently used in the clinical practice. Since the restoration of TRIM8 protein levels in CRC cells recovers chemotherapy response, it may represent a new promising therapeutic target in the treatment of CRC.

6.
Front Genet ; 11: 552490, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193626

RESUMO

MicroRNAs (miRNAs) are ubiquitous regulators of gene expression, evolutionarily conserved in plants and mammals. In recent years, although a growing number of papers debate the role of plant miRNAs on human gene expression, the molecular mechanisms through which this effect is achieved are still not completely elucidated. Some evidence suggest that this interaction might be sequence specific, and in this work, we investigated this possibility by transcriptomic and bioinformatics approaches. Plant and human miRNA sequences from primary databases were collected and compared for their similarities (global or local alignments). Out of 2,588 human miRNAs, 1,606 showed a perfect match of their seed sequence with the 5' end of 3,172 plant miRNAs. Further selections were applied based on the role of the human target genes or of the miRNA in cell cycle regulation (as an oncogene, tumor suppressor, or a biomarker for prognosis, or diagnosis in cancer). Based on these criteria, 20 human miRNAs were selected as potential functional analogous of 7 plant miRNAs, which were in turn transfected in different cell lines to evaluate their effect on cell proliferation. A significant decrease was observed in colorectal carcinoma HCT116 cell line. RNA-Seq demonstrated that 446 genes were differentially expressed 72 h after transfection. Noteworthy, we demonstrated that the plant mtr-miR-5754 and gma-miR4995 directly target the tumor-associated long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and nuclear paraspeckle assembly transcript 1 (NEAT1) in a sequence-specific manner. In conclusion, according to other recent discoveries, our study strengthens and expands the hypothesis that plant miRNAs can have a regulatory effect in mammals by targeting both protein-coding and non-coding RNA, thus suggesting new biotechnological applications.

7.
Front Vet Sci ; 7: 577395, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33381534

RESUMO

Miltefosine (MIL)-allopurinol combination therapy administered at standard dosage is effective to treat canine leishmaniosis, nevertheless for some dogs the digestive tolerance of MIL is not acceptable. This study evaluates an alternative therapeutic protocol by using a modified dosage of MIL to increase its effectiveness and improve the digestive tolerance. Thirty-four Leishmania infantum owned naturally infected dogs were included and monitored for 180 days. The dogs were allocated in two randomized groups: Group X-18 dogs treated with MIL registered dose of 2 mg/kg, oral administration, once daily, for 28 days; Group Y-16 dogs treated with 1.2 mg/kg for 5 days followed by 2.5 mg/kg for 25 days. Both groups were also treated with allopurinol. Digestive tolerance was monitored by adverse events observation. Treatments effectiveness was evaluated by monitoring the reduction of clinical score, the improvement of clinicopathological abnormalities, the reduction of parasitological load by PCR and the number of relapses. 16.6% dogs of group X and 12.5% dogs of group Y showed treatment associated adverse events. The reduction of clinical score was 61.7% for group X and 71.6% for group Y. All dogs showed an improvement of laboratory parameters after treatment. Quantitative PCR showed better results in group Y compared to group X; relapses were only registered in four dogs of group X. The modified protocol demonstrates a better trend of results in term of tolerance, clinical effectiveness, parasitological load reduction and relapses control, suggesting it could be considered for new large-scale studies.

8.
Front Oncol ; 9: 1154, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781486

RESUMO

The p53 gene family network plays a pivotal role in the control of many biological processes and therefore the right balance between the pro-apoptotic and pro-survival isoforms is key to maintain cellular homeostasis. The stability of the p53 tumor suppressor protein and that of oncogenic ΔNp63α, is crucial to control cell proliferation. The aberrant expression of p53 tumor suppressor protein and oncogenic ΔNp63α contributes to tumorigenesis and significantly affects anticancer drug response. Recently, we demonstrated that TRIM8 increases p53 stability, potentiating its tumor suppressor activity. In this paper, we show that TRIM8 simultaneously reduces the level of the pro-proliferative ΔNp63α protein, in both a proteasomal and caspase-1 dependent way, thereby playing a critical role in the cellular response to DNA damaging agents. Moreover, we provided evidence that ΔNp63α in turn, suppresses TRIM8 gene expression by preventing p53-mediated transactivation of TRIM8, therefore suggesting the existence of a negative feedback loop. These findings indicate that TRIM8 exerts its anticancer power through a joint action that provides on one hand, the activation of the p53 tumor suppressor role, and on the other the quenching of the oncogenic ΔNp63α protein activity. The enhancement of TRIM8 activity may offer therapeutic benefits and improve the management of chemoresistant tumors.

9.
Sci Rep ; 8(1): 4282, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29523845

RESUMO

Alzheimer's Disease (AD) is the most common cause of dementia affecting the elderly population worldwide. We have performed a comprehensive transcriptome profiling of Late-Onset AD (LOAD) patients using second generation sequencing technologies, identifying 2,064 genes, 47 lncRNAs and 4 miRNAs whose expression is specifically deregulated in the hippocampal region of LOAD patients. Moreover, analyzing the hippocampal, temporal and frontal regions from the same LOAD patients, we identify specific sets of deregulated miRNAs for each region, and we confirm that the miR-132/212 cluster is deregulated in each of these regions in LOAD patients, consistent with these miRNAs playing a role in AD pathogenesis. Notably, a luciferase assay indicates that miR-184 is able to target the 3'UTR NR4A2 - which is known to be involved in cognitive functions and long-term memory and whose expression levels are inversely correlated with those of miR-184 in the hippocampus. Finally, RNA editing analysis  reveals a general RNA editing decrease in LOAD hippocampus, with 14 recoding sites significantly and differentially edited in 11 genes. Our data underline specific transcriptional changes in LOAD brain and provide an important source of information for understanding the molecular changes characterizing LOAD progression.


Assuntos
Doença de Alzheimer/genética , Transcriptoma , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Feminino , Lobo Frontal/metabolismo , Hipocampo/metabolismo , Humanos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Edição de RNA , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Lobo Temporal/metabolismo
10.
BMC Bioinformatics ; 8 Suppl 1: S20, 2007 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-17430565

RESUMO

BACKGROUND: The p53 gene family consists of the three genes p53, p63 and p73, which have polyhedral non-overlapping functions in pivotal cellular processes such as DNA synthesis and repair, growth arrest, apoptosis, genome stability, angiogenesis, development and differentiation. These genes encode sequence-specific nuclear transcription factors that recognise the same responsive element (RE) in their target genes. Their inactivation or aberrant expression may determine tumour progression or developmental disease. The discovery of several protein isoforms with antagonistic roles, which are produced by the expression of different promoters and alternative splicing, widened the complexity of the scenario of the transcriptional network of the p53 family members. Therefore, the identification of the genes transactivated by p53 family members is crucial to understand the specific role for each gene in cell cycle regulation. We have combined a genome-wide computational search of p53 family REs and microarray analysis to identify new direct target genes. The huge amount of biological data produced has generated a critical need for bioinformatic tools able to manage and integrate such data and facilitate their retrieval and analysis. DESCRIPTION: We have developed the p53FamTaG database (p53 FAMily TArget Genes), a modular relational database, which contains p53 family direct target genes selected in the human genome searching for the presence of the REs and the expression profile of these target genes obtained by microarray experiments. p53FamTaG database also contains annotations of publicly available databases and links to other experimental data. The genome-wide computational search of the REs was performed using PatSearch, a pattern-matching program implemented in the DNAfan tool. These data were integrated with the microarray results we produced from the overexpression of different isoforms of p53, p63 and p73 stably transfected in isogenic cell lines, allowing the comparative study of the transcriptional activity of all the proteins in the same cellular background.p53FamTaG database is available free at http://www2.ba.itb.cnr.it/p53FamTaG/ CONCLUSION: p53FamTaG represents a unique integrated resource of human direct p53 family target genes that is extensively annotated and provides the users with an efficient query/retrieval system which displays the results of our microarray experiments and allows the export of RE sequences. The database was developed for supporting and integrating high-throughput in silico and experimental analyses and represents an important reference source of knowledge for research groups involved in the field of oncogenesis, apoptosis and cell cycle regulation.


Assuntos
Algoritmos , Proteínas de Ligação a DNA/genética , Bases de Dados Genéticas , Marcação de Genes/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Mapeamento de Interação de Proteínas/métodos , Transativadores/genética , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética , Sítios de Ligação , Humanos , Família Multigênica/genética , Proteínas Nucleares/genética , Ligação Proteica , Software , Fatores de Transcrição
11.
Genes (Basel) ; 8(12)2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29182544

RESUMO

The TRIM8/GERP protein is a member of the TRIM family defined by the presence of a common domain structure composed of a tripartite motif including a RING-finger, one or two B-box domains, and a coiled-coil motif. The TRIM8 gene maps on chromosome 10 within a region frequently found deleted and rearranged in tumours and transcribes a 3.0-kB mRNA. Its expression is mostly ubiquitously in murine and human tissues, and in epithelial and lymphoid cells, it can be induced by IFNγ. The protein spans 551 aa and is highly conserved during evolution. TRIM8 plays divergent roles in many biological processes, including important functions in inflammation and cancer through regulating various signalling pathways. In regulating cell growth, TRIM8 exerts either a tumour suppressor action, playing a prominent role in regulating p53 tumour suppressor activity, or an oncogene function, through the positive regulation of the NF-κB pathway. The molecular mechanisms underlying this dual role in human cancer will be discussed in depth in this review, and it will highlight the challenge and importance of developing novel therapeutic strategies specifically aimed at blocking the pro-oncogenic arm of the TRIM8 signalling pathway without affecting its tumour suppressive effects.

13.
Mol Biol Cell ; 26(15): 2733-41, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26063735

RESUMO

The regulation of insulin-like growth factor-binding protein 3 (IGFBP3) gene expression is complex, because it can be induced by agents that both stimulate and inhibit the proliferation. The principal aim of this study was to investigate whether p73, a member of the p53 gene family, has a role in the regulation of the IGFBP3 expression and whether this regulation occurs in a context of cell survival or death. We demonstrate that IGFBP3 is a direct TAp73α (the p73 isoform that contains the trans-activation domain) target gene and activates the expression of IGFBP3 in actively proliferating cells. As IGFBP3 plays a key role in regulating the growth hormone/insulin-like growth factor type 1 (GH/IGF1) axis, whose alterations in gene expression appear to have a role in the growth failure of children born small for gestational age (SGA), we measured the mRNA expression levels of p73 and IGFBP3 in a group of SGA children. We found that mRNA expression levels of p73 and IGFBP3 are significantly lower in SGA children compared with controls and, in particular, p73 mRNA expression is significantly lower in SGA children with respect to height. Our results shed light on the intricate GH/IGF pathway, suggesting p73 as a good biomarker of the clinical risk for SGA children to remain short in adulthood.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Sequência de Bases , Proliferação de Células/fisiologia , Células Cultivadas , Criança , Proteínas de Ligação a DNA/genética , Feminino , Genes p53 , Células HCT116 , Células HEK293 , Hormônio do Crescimento Humano/metabolismo , Humanos , Lactente , Recém-Nascido , Recém-Nascido Pequeno para a Idade Gestacional , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Células MCF-7 , Masculino , Dados de Sequência Molecular , Proteínas Nucleares/genética , Transfecção , Proteína Tumoral p73 , Proteínas Supressoras de Tumor/genética
14.
Oncotarget ; 5(17): 7446-57, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25277184

RESUMO

In some tumours, despite a wild-type p53 gene, the p53 pathway is inactivated by alterations in its regulators or by unknown mechanisms, leading to resistance to cytotoxic therapies. Understanding the mechanisms of functional inactivation of wild-type p53 in these tumours may help to define prospective targets for treating cancer by restoring p53 activity. Recently, we identified TRIM8 as a new p53 modulator, which stabilizes p53 impairing its association with MDM2 and inducing the reduction of cell proliferation. In this paper we demonstrated that TRIM8 deficit dramatically impairs p53-mediated cellular responses to chemotherapeutic drugs and that TRIM8 is down regulated in patients affected by clear cell Renal Cell Carcinoma (ccRCC), an aggressive drug-resistant cancer showing wild-type p53. These results suggest that down regulation of TRIM8 might be an alternative way to suppress p53 activity in RCC. Interestingly, we show that TRIM8 expression recovery in RCC cell lines renders these cells sensitive to chemotherapeutic treatments following p53 pathway re-activation. These findings provide the first mechanistic link between TRIM8 and the drug resistance of ccRCC and suggest more generally that TRIM8 could be used as enhancer of the chemotherapy efficacy in cancers where p53 is wild-type and its pathway is defective.


Assuntos
Carcinoma de Células Renais/patologia , Proteínas de Transporte/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Neoplasias Renais/patologia , Proteínas do Tecido Nervoso/metabolismo , Idoso , Idoso de 80 Anos ou mais , Western Blotting , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Imunoprecipitação , Neoplasias Renais/metabolismo , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Proteína Supressora de Tumor p53/metabolismo
15.
Cancer Metab ; 1(1): 11, 2013 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24280190

RESUMO

BACKGROUND: Aerobic glycolysis, namely the Warburg effect, is the main hallmark of cancer cells. Mitochondrial respiratory dysfunction has been proposed to be one of the major causes for such glycolytic shift. This hypothesis has been revisited as tumors appear to undergo waves of gene regulation during progression, some of which rely on functional mitochondria. In this framework, the role of mitochondrial complex I is still debated, in particular with respect to the effect of mitochondrial DNA mutations in cancer metabolism. The aim of this work is to provide the proof of concept that functional complex I is necessary to sustain tumor progression. METHODS: Complex I-null osteosarcoma cells were complemented with allotopically expressed complex I subunit 1 (MT-ND1). Complex I re-assembly and function recovery, also in terms of NADH consumption, were assessed. Clones were tested for their ability to grow in soft agar and to generate tumor masses in nude mice. Hypoxia levels were evaluated via pimonidazole staining and hypoxia-inducible factor-1α (HIF-1α) immunoblotting and histochemical staining. 454-pyrosequencing was implemented to obtain global transcriptomic profiling of allotopic and non-allotopic xenografts. RESULTS: Complementation of a truncative mutation in the gene encoding MT-ND1, showed that a functional enzyme was required to perform the glycolytic shift during the hypoxia response and to induce a Warburg profile in vitro and in vivo, fostering cancer progression. Such trigger was mediated by HIF-1α, whose stabilization was regulated after recovery of the balance between α-ketoglutarate and succinate due to a recuperation of NADH consumption that followed complex I rescue. CONCLUSION: Respiratory complex I is essential for the induction of Warburg effect and adaptation to hypoxia of cancer cells, allowing them to sustain tumor growth. Differently from other mitochondrial tumor suppressor genes, therefore, a complex I severe mutation such as the one here reported may confer anti-tumorigenic properties, highlighting the prognostic values of such genetic markers in cancer.

16.
Cell Cycle ; 11(3): 511-23, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22262183

RESUMO

p53 is a central hub in controlling cell proliferation. To maintain genome integrity in response to cellular stress, p53 directly regulates the transcription of genes involved in cell cycle arrest, DNA repair, apoptosis and/or senescence. An array of post-translational modifications and protein-protein interactions modulates its stability and activities in order to avoid malignant transformation. However, to date it is still not clear how cells decide their own fate in response to different types of stress. We described here that the human TRIM8 protein, a member of the TRIM family, is a new modulator of the p53-mediated tumor suppression mechanism. We showed that under stress conditions, such as UV exposure, p53 induced the expression of TRIM8, which in turn stabilized p53 leading to cell cycle arrest and reduction of cell proliferation through enhancement of CDKN1A (p21) and GADD45 expression. TRIM8 silencing reduced the capacity of p53 to activate genes involved in cell cycle arrest and DNA repair, in response to cellular stress. Concurrently, TRIM8 overexpression induced the degradation of the MDM2 protein, the principal regulator of p53 stability. Co-immunoprecipitation experiments showed that TRIM8 physically interacted with p53, impairing its interaction with MDM2. Altogether, our results reveal a previously unknown regulatory pathway controlling p53 activity and suggest TRIM8 as a novel therapeutic target to enhance p53 tumor suppressor activity.


Assuntos
Proteínas de Transporte/metabolismo , Pontos de Checagem do Ciclo Celular , Proteínas do Tecido Nervoso/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/química , Linhagem Celular , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Reparo do DNA , Células HCT116 , Humanos , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/química , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteína Supressora de Tumor p53/genética , Raios Ultravioleta , Proteínas GADD45
17.
Cancer Res ; 69(22): 8563-71, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19861536

RESUMO

Despite extensive studies on the role of tumor suppressor p53 protein and its homologues, p73 and p63, following their overexpression or cellular stress, very little is known about the regulation of the three proteins in cells during physiologic cell cycle progression. We report a role for p73 and p63 in supporting cellular proliferation through the transcriptional activation of the genes involved in G(1)-S and G(2)-M progression. We found that in MCF-7 cells, p73 and p63, but not p53, are modulated during the cell cycle with a peak in S phase, and their silencing determines a significant suppression of proliferation compared with the control. Chromatin immunoprecipitation analysis shows that in cycling cells, p73 and p63 are bound to the p53-responsive elements (RE) present in the regulatory region of cell cycle progression genes. On the contrary, when the cells are arrested in G(0)-G(1), p73 detaches from the REs and it is replaced by p53, which represses the expression of these genes. When the cells move in S phase, p73 is recruited again and p53 is displaced or is weakly bound to the REs. These data open new possibilities for understanding the involvement of p73 and p63 in cancer. The elevated concentrations of p73 and p63 found in many cancers could cause the aberrant activation of cell growth progression genes and therefore contribute to cancer initiation or progression under certain conditions.


Assuntos
Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Genes cdc/fisiologia , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Western Blotting , Ciclo Celular/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Humanos , Imunoprecipitação , Proteínas de Membrana/genética , Proteínas Nucleares/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica , Transfecção , Proteína Tumoral p73 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética
18.
Cell Cycle ; 5(2): 205-12, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16410722

RESUMO

An unresolved issue regards the role of p73 and p63, the two homologs of the p53 oncosuppressor gene, in normal cells and in tumor development. Specific target genes for each protein need to be identified and characterized in order to understand the specific role of each protein in tumor initiation and progression as well as in oncosuppression and development. We tested whether p63 is implicated in transcriptional events related to sustaining cell proliferation by transactivation of antiapoptotic and cell survival target genes such as Adenosine Deaminase (ADA), an important gene involved in cell proliferation. We demonstrate that ADA is a direct target gene of p63 isoforms. In human keratinocytes, the rate of proliferation and the high level of ADA transcript diminished upon elimination of p63 by small interfering RNA. Reporter assays and chromatin immunoprecipitation experiments indicate a physical interaction of p63 with the two putative p53 binding sites we identified in the ADA gene. Moreover, in response to p53 stabilization and DeltaNp63 downregulation in normal keratinocytes after U.V. treatment, we found a change in the transcriptional pattern of the p53 family target genes, consistent with the different roles played by p53 and p63 in tumor suppression and cellular proliferation. In fact p53 upregulation determined an increase in p21, which in turn mediated the cell cycle arrest, while the downregulation of DeltaNp63 determined a marked decrease in ADA transcript. The experiments reported here support the hypothesis that TAp63 and DeltaNp63 might contribute to tumor genesis not exclusively by antagonizing p53, but by conferring a proliferative potential on cancer cells through the transactivation of target genes indispensable for cell division, such as the Adenosine Deaminase gene.


Assuntos
Adenosina Desaminase/genética , Fosfoproteínas/metabolismo , Transativadores/metabolismo , Linhagem Celular , Proliferação de Células , Células Cultivadas , Proteínas de Ligação a DNA , Regulação para Baixo/genética , Éxons/genética , Genes Supressores de Tumor , Humanos , Íntrons/genética , Queratinócitos/efeitos da radiação , Fosfoproteínas/deficiência , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Elementos de Resposta/genética , Transativadores/deficiência , Fatores de Transcrição , Ativação Transcricional/genética , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA