Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Soil Sci ; 74(2): e13363, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38529015

RESUMO

Agricultural soils are a major source of the potent greenhouse gas and ozone depleting substance, N2O. To implement management practices that minimize microbial N2O production and maximize its consumption (i.e., complete denitrification), we must understand the interplay between simultaneously occurring biological and physical processes, especially how this changes with soil depth. Meaningfully disentangling of these processes is challenging and typical N2O flux measurement techniques provide little insight into subsurface mechanisms. In addition, denitrification studies are often conducted on sieved soil in altered O2 environments which relate poorly to in situ field conditions. Here, we developed a novel incubation system with headspaces both above and below the soil cores and field-relevant O2 concentrations to better represent in situ conditions. We incubated intact sandy clay loam textured agricultural topsoil (0-10 cm) and subsoil (50-60 cm) cores for 3-4 days at 50% and 70% water-filled pore space, respectively. 15N-N2O pool dilution and an SF6 tracer were injected below the cores to determine the relative diffusivity and the net N2O emission and gross N2O emission and consumption fluxes. The relationship between calculated fluxes from the below and above soil core headspaces confirmed that the system performed well. Relative diffusivity did not vary with depth, likely due to the preservation of preferential flow pathways in the intact cores. Gross N2O emission and uptake also did not differ with depth but were higher in the drier cores, contrary to expectation. We speculate this was due to aerobic denitrification being the primary N2O consuming process and simultaneously occurring denitrification and nitrification both producing N2O in the drier cores. We provide further evidence of substantial N2O consumption in drier soil but without net negative N2O emissions. The results from this study are important for the future application of the 15N-N2O pool dilution method and N budgeting and modelling, as required for improving management to minimize N2O losses.

2.
J Environ Manage ; 322: 116037, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36049305

RESUMO

According to the available guidelines, good practices for calculating nitrous oxide (N2O) emission factors (EFs) for livestock excreta and manure application include that sampling duration should be of at least one year after the nitrogen (N) application or deposition. However, the available experimental data suggest that in many cases most emissions are concentrated in the first months following N application. Therefore resources could be better deployed by measuring more intensively during a shorter period. This study aimed to assess the contribution of the N2O flux in the period directly after N application to the annual net emission. We used a database of 100 year-long plot experiments from different excreted-N sources (dung, urine, farmyard manure and slurry) used to derive EFs for the UK and Ireland. We explored different shorter potential measurement periods that could be used as proxies for cumulative annual emissions. The analysis showed that the majority of emissions occur in the first months after application, especially in experiments that i) had urine as the N source, ii) had spring N application, iii) were conducted on fine-textured soils, or iv) showed high annual emissions magnitude. Experiments that showed a smaller percentage of emissions in the first months also had a low magnitude of annual net emissions (below 370 gN2O-N ha-1 year-1), so the impact of measuring during a shorter period would not greatly influence the calculated EF. Accurate EF estimations were obtained by measuring for at least 60 days for urine (underestimation: 7.1%), 120 days for dung and slurry (4.7 and 5.1%) and 180 days for FYM (1.4%). At least in temperate climates, these results are promising in terms of being able to estimate annual N2O fluxes accurately by collecting data for less than 12 months, with significant resource-saving when conducting experiments towards developing country-specific EFs.


Assuntos
Esterco , Óxido Nitroso , Agricultura/métodos , Animais , Bovinos , Fertilizantes , Irlanda , Nitrogênio , Óxido Nitroso/análise , Solo , Reino Unido
3.
Sensors (Basel) ; 21(8)2021 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-33920437

RESUMO

Understanding the behaviour of grazing animals at pasture is crucial in order to develop management strategies that will increase the potential productivity of grazing systems and simultaneously decrease the negative impact on the environment. The objective of this review was to summarize and analyse the scientific literature that has addressed the site use preference of grazing cattle using global positioning systems (GPS) collars in the past 21 years (2000-2020) to aid the development of more sustainable grazing livestock systems. The 84 studies identified were undertaken in several regions of the world, in diverse production systems, under different climate conditions and with varied methodologies and animal types. This work presents the information in categories according to the main findings reviewed, covering management, external and animal factors driving animal movement patterns. The results showed that some variables, such as stocking rate, water and shade location, weather conditions and pasture (terrain and vegetation) characteristics, have a significant impact on the behaviour of grazing cattle. Other types of bio-loggers can be deployed in grazing ruminants to gain insights into their metabolism and its relationship with the landscape they utilise. Changing management practices based on these findings could improve the use of grasslands towards more sustainable and productive livestock systems.


Assuntos
Sistemas de Informação Geográfica , Gado , Criação de Animais Domésticos , Animais , Bovinos , Ruminantes , Água , Tempo (Meteorologia)
4.
Glob Chang Biol ; 26(4): 2002-2013, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31975492

RESUMO

Nitrous oxide (N2 O) is an air pollutant of major environmental concern, with agriculture representing 60% of anthropogenic global N2 O emissions. Much of the N2 O emissions from livestock production systems result from transformation of N deposited to soil within animal excreta. There exists a substantial body of literature on urine patch N2 O dynamics, we aimed to identify key controlling factors influencing N2 O emissions and to aid understanding of knowledge gaps to improve GHG reporting and prioritize future research. We conducted an extensive literature review and random effect meta-analysis (using REML) of results to identify key relationships between multiple potential independent factors and global N2 O emissions factors (EFs) from urine patches. Mean air temperature, soil pH and ruminant animal species (sheep or cow) were significant factors influencing the EFs reviewed. However, several factors that are known to influence N2 O emissions, such as animal diet and urine composition, could not be considered due to the lack of reported data. The review highlighted a widespread tendency for inadequate metadata and uncertainty reporting in the published studies, as well as the limited geographical extent of investigations, which are more often conducted in temperate regions thus far. Therefore, here we give recommendations for factors that are likely to affect the EFs and should be included in all future studies, these include the following: soil pH and texture; experimental set-up; direct measurement of soil moisture and temperature during the study period; amount and composition of urine applied; animal type and diet; N2 O emissions with a measure of uncertainty; data from a control with zero-N application and meteorological data.

5.
Environ Res ; 179(Pt A): 108806, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31627026

RESUMO

The last step of denitrification, i.e. the reduction of N2O to N2, has been intensively studied in the laboratory to understand the denitrification process, predict nitrogen fertiliser losses, and to establish mitigation strategies for N2O. However, assessing N2 production via denitrification at large spatial scales is still not possible due to lack of reliable quantitative approaches. Here, we present a novel numerical "mapping approach" model using the δ15Nsp/δ18O slope that has been proposed to potentially be used to indirectly quantify N2O reduction to N2 at field or larger spatial scales. We evaluate the model using data obtained from seven independent soil incubation studies conducted under a He-O2 atmosphere. Furthermore, we analyse the contribution of different parameters to the uncertainty of the model. The model performance strongly differed between studies and incubation conditions. Re-evaluation of the previous data set demonstrated that using soils-specific instead of default endmember values could largely improve model performance. Since the uncertainty of modelled N2O reduction was relatively high, further improvements to estimate model parameters to obtain more precise estimations remain an on-going matter, e.g. by determination of soil-specific isotope fractionation factors and isotopocule endmember values of N2O production processes using controlled laboratory incubations. The applicability of the mapping approach model is promising with an increasing availability of real-time and field based analysis of N2O isotope signatures.


Assuntos
Desnitrificação , Modelos Químicos , Dióxido de Nitrogênio/análise , Nitrogênio/análise , Solo , Óxido Nitroso , Incerteza
6.
Geoderma ; 315: 49-58, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29615828

RESUMO

In this study, we evaluated the ability of the SPACSYS model to simulate water run-off, soil moisture, N2O fluxes and grass growth using data generated from a field of the North Wyke Farm Platform. The field-scale model is adapted via a linked and grid-based approach (grid-to-grid) to account for not only temporal dynamics but also the within-field spatial variation in these key ecosystem indicators. Spatial variability in nutrient and water presence at the field-scale is a key source of uncertainty when quantifying nutrient cycling and water movement in an agricultural system. Results demonstrated that the new spatially distributed version of SPACSYS provided a worthy improvement in accuracy over the standard (single-point) version for biomass productivity. No difference in model prediction performance was observed for water run-off, reflecting the closed-system nature of this variable. Similarly, no difference in model prediction performance was found for N2O fluxes, but here the N2O predictions were noticeably poor in both cases. Further developmental work, informed by this study's findings, is proposed to improve model predictions for N2O. Soil moisture results with the spatially distributed version appeared promising but this promise could not be objectively verified.

7.
Geoderma ; 305: 336-345, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29104306

RESUMO

Agricultural soils are a major source of nitric- (NO) and nitrous oxide (N2O), which are produced and consumed by biotic and abiotic soil processes. The dominant sources of NO and N2O are microbial nitrification and denitrification, and emissions of NO and N2O generally increase after fertiliser application. The present study investigated the impact of N-source distribution on emissions of NO and N2O from soil and the significance of denitrification, rather than nitrification, as a source of NO emissions. To eliminate spatial variability and changing environmental factors which impact processes and results, the experiment was conducted under highly controlled conditions. A laboratory incubation system (DENIS) was used, allowing simultaneous measurement of three N-gases (NO, N2O, N2) emitted from a repacked soil core, which was combined with 15N-enrichment isotopic techniques to determine the source of N emissions. It was found that the areal distribution of N and C significantly affected the quantity and timing of gaseous emissions and 15N-analysis showed that N2O emissions resulted almost exclusively from the added amendments. Localised higher concentrations, so-called hot spots, resulted in a delay in N2O and N2 emissions causing a longer residence time of the applied N-source in the soil, therefore minimising NO emissions while at the same time being potentially advantageous for plant-uptake of nutrients. If such effects are also observed for a wider range of soils and conditions, then this will have major implications for fertiliser application protocols to minimise gaseous N emissions while maintaining fertilisation efficiency.

8.
Rapid Commun Mass Spectrom ; 30(5): 620-6, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26842583

RESUMO

RATIONALE: The aim of this study was to determine the impact of isotope fractionation associated with N2O reduction during soil denitrification on N2O site preference (SP) values and hence quantify the potential bias on SP-based N2O source partitioning. METHODS: The N2O SP values (n = 431) were derived from six soil incubation studies in N2-free atmosphere, and determined by isotope ratio mass spectrometry (IRMS). The N2 and N2O concentrations were measured directly by gas chromatography. Net isotope effects (NIE) during N2O reduction to N2 were compensated for using three different approaches: a closed-system model, an open-system model and a dynamic apparent NIE function. The resulting SP values were used for N2O source partitioning based on a two end-member isotopic mass balance. RESULTS: The average SP0 value, i.e. the average SP values of N2O prior to N2O reduction, was recalculated with the closed-system model, resulting in -2.6 ‰ (±9.5), while the open-system model and the dynamic apparent NIE model gave average SP0 values of 2.9 ‰ (±6.3) and 1.7 ‰ (±6.3), respectively. The average source contribution of N2O from nitrification/fungal denitrification was 18.7% (±21.0) according to the closed-system model, while the open-system model and the dynamic apparent NIE function resulted in values of 31.0% (±14.0) and 28.3% (±14.0), respectively. CONCLUSIONS: Using a closed-system model with a fixed SP isotope effect may significantly overestimate the N2O reduction effect on SP values, especially when N2O reduction rates are high. This is probably due to soil inhomogeneity and can be compensated for by the application of a dynamic apparent NIE function, which takes the variable reduction rates in soil micropores into account.


Assuntos
Óxido Nitroso/análise , Solo/química , Desnitrificação , Espectrometria de Massas , Nitrificação , Nitrogênio/análise , Isótopos de Nitrogênio/análise , Oxirredução
9.
Rapid Commun Mass Spectrom ; 29(3): 269-82, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26411625

RESUMO

RATIONALE: This study aimed (i) to determine the isotopic fractionation factors associated with N2O production and reduction during soil denitrification and (ii) to help specify the factors controlling the magnitude of the isotope effects. For the first time the isotope effects of denitrification were determined in an experiment under oxic atmosphere and using a novel approach where N2O production and reduction occurred simultaneously. METHODS: Soil incubations were performed under a He/O2 atmosphere and the denitrification product ratio [N2O/(N2 + N2O)] was determined by direct measurement of N2 and N2O fluxes. N2O isotopocules were analyzed by mass spectrometry to determine δ(18)O, δ(15)N and (15)N site preference within the linear N2O molecule (SP). An isotopic model was applied for the simultaneous determination of net isotope effects (η) of both N2O production and reduction, taking into account emissions from two distinct soil pools. RESULTS: A clear relationship was observed between (15)N and (18)O isotope effects during N2O production and denitrification rates. For N2O reduction, diverse isotope effects were observed for the two distinct soil pools characterized by different product ratios. For moderate product ratios (from 0.1 to 1.0) the range of isotope effects given by previous studies was confirmed and refined, whereas for very low product ratios (below 0.1) the net isotope effects were much smaller. CONCLUSIONS: The fractionation factors associated with denitrification, determined under oxic incubation, are similar to the factors previously determined under anoxic conditions, hence potentially applicable for field studies. However, it was shown that the η(18)O/η(15)N ratios, previously accepted as typical for N2O reduction processes (i.e., higher than 2), are not valid for all conditions.


Assuntos
Desnitrificação , Dióxido de Nitrogênio/análise , Nitrogênio/análise , Microbiologia do Solo , Espectrometria de Massas , Isótopos de Nitrogênio/análise , Isótopos de Oxigênio/análise , Solo/química
10.
Atmos Environ (1994) ; 122: 272-281, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26865831

RESUMO

China accounts for a third of global nitrogen fertilizer consumption. Under an International Panel on Climate Change (IPCC) Tier 2 assessment, emission factors (EFs) are developed for the major crop types using country-specific data. IPCC advises a separate calculation for the direct nitrous oxide (N2O) emissions of rice cultivation from that of cropland and the consideration of the water regime used for irrigation. In this paper we combine these requirements in two independent analyses, using different data quality acceptance thresholds, to determine the influential parameters on emissions with which to disaggregate and create N2O EFs. Across China, the N2O EF for lowland horticulture was slightly higher (between 0.74% and 1.26% of fertilizer applied) than that for upland crops (values ranging between 0.40% and 1.54%), and significantly higher than for rice (values ranging between 0.29% and 0.66% on temporarily drained soils, and between 0.15% and 0.37% on un-drained soils). Higher EFs for rice were associated with longer periods of drained soil and the use of compound fertilizer; lower emissions were associated with the use of urea or acid soils. Higher EFs for upland crops were associated with clay soil, compound fertilizer or maize crops; lower EFs were associated with sandy soil and the use of urea. Variation in emissions for lowland vegetable crops was closely associated with crop type. The two independent analyses in this study produced consistent disaggregated N2O EFs for rice and mixed crops, showing that the use of influential cropping parameters can produce robust EFs for China.

11.
Nat Food ; 4(1): 51-60, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37118575

RESUMO

Achieving food security requires resilient agricultural systems with improved nutrient-use efficiency, optimized water and nutrient storage in soils, and reduced gaseous emissions. Success relies on understanding coupled nitrogen and carbon metabolism in soils, their associated influences on soil structure and the processes controlling nitrogen transformations at scales relevant to microbial activity. Here we show that the influence of organic matter on arable soil nitrogen transformations can be decoded by integrating metagenomic data with soil structural parameters. Our approach provides a mechanistic explanation of why organic matter is effective in reducing nitrous oxide losses while supporting system resilience. The relationship between organic carbon, soil-connected porosity and flow rates at scales relevant to microbes suggests that important increases in nutrient-use efficiency could be achieved at lower organic carbon stocks than currently envisaged.


Assuntos
Nitrogênio , Solo , Solo/química , Nitrogênio/análise , Agricultura , Carbono/química , Óxido Nitroso/análise
12.
Animals (Basel) ; 12(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36359122

RESUMO

The inclusion of plant extracts that contain secondary compounds with the potential to modulate rumen fermentation and improve animal performance has gained attention in recent years. The aim of this study was to evaluate the effect of the inclusion of yerba mate extract (Ilex paraguariensis ST. Hilaire) (YME) on the ruminal parameters. Eight castrated cattle were divided into four groups, a control without YME (0%) and three treatment groups with 0.5, 1 and 2% inclusion of YME in the dry matter. The inclusion of YME did not show differences in ruminal methane emissions (CH4), and total apparent digestibility (p = 0.54). Likewise, YME did not modify ruminal pH, but positively affected NH3-N, which decreased linearly as the extract level in the diet increased (p = 0.01). No short chain fatty acids (SCFA) were influenced by YME, except isovaleric acid (p = 0.01), which showed a lower concentration in the inclusion of 2% YME. Our results show that up to 2% YME does not affect digestibility, ruminal fermentation parameters, or the concentration of short-chain fatty acids in the rumen.

13.
Plant Soil ; 480(1-2): 369-389, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466744

RESUMO

Purpose: Nitrogen (N) transfer from white clover (Trifolium repens cv.) to ryegrass (Lolium perenne cv.) has the potential to meet ryegrass N requirements. This study aimed to quantify N transfer in a mixed pasture and investigate the influence of the microbial community and land management on N transfer. Methods: Split root 15N-labelling of clover quantified N transfer to ryegrass via exudation, microbial assimilation, decomposition, defoliation and soil biota. Incorporation into the microbial protein pool was determined using compound-specific 15N-stable isotope probing approaches. Results: N transfer to ryegrass and soil microbial protein in the model system was relatively small, with one-third arising from root exudation. N transfer to ryegrass increased with no microbial competition but soil microbes also increased N transfer via shoot decomposition. Addition of mycorrhizal fungi did not alter N transfer, due to the source-sink nature of this pathway, whilst weevil grazing on roots decreased microbial N transfer. N transfer was bidirectional, and comparable on a short-term scale. Conclusions: N transfer was low in a model young pasture established from soil from a permanent grassland with long-term N fertilisation. Root exudation and decomposition were major N transfer pathways. N transfer was influenced by soil biota (weevils, mycorrhizae) and land management (e.g. grazing). Previous land management and the role of the microbial community in N transfer must be considered when determining the potential for N transfer to ryegrass. Supplementary Information: The online version contains supplementary material available at 10.1007/s11104-022-05585-0.

14.
Sci Total Environ ; 792: 148163, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34147803

RESUMO

In a field experiment, annual nitrous oxide (N2O) emissions and grassland yield were measured across different plant communities, comprising systematically varying combinations of monocultures and mixtures of three functional groups (FG): grasses (Lolium perenne, Phleum pratense), legumes (Trifolium pratense, Trifolium repens) and herbs (Cichorium intybus, Plantago lanceolata). Plots received 150 kg ha-1 year-1 nitrogen (N) (150 N), except L. perenne monocultures which received two N levels: 150 N and 300 N. The effect of plant diversity on N2O emissions was derived from linear combinations of species performances' in monoculture (species identity) and not from strong interactions between species in mixtures. Increasing from 150 N to 300 N in L. perenne resulted in a highly significant increase in cumulative N2O emissions from 1.39 to 3.18 kg N2O-N ha-1 year-1. Higher N2O emissions were also associated with the legume FG. Emissions intensities (yield-scaled N2O emissions) from multi-species mixture communities around the equi-proportional mixture were lowered due to interactions among species. For N2O emissions scaled by nitrogen yield in forage, the 6-species mixture was significantly lower than L. perenne at both 300 N and 150 N. In comparison to 300 N L. perenne, the same N yield or DM yield could have been produced with the equi-proportional 6-species mixture (150 N) while reducing N2O losses by 63% and 58% respectively. Compared to 150 N L. perenne, the same N yield or DM yield could have been produced with the 6-species mixture while reducing N2O losses by 41% and 24% respectively. Overall, this study found that multi-species grasslands can potentially reduce both N2O emissions and emissions intensities, contributing to the sustainability of grassland production.


Assuntos
Pradaria , Solo , Fertilizantes/análise , Nitrogênio , Óxido Nitroso/análise , Poaceae
15.
Sci Rep ; 11(1): 12116, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108538

RESUMO

In grazing systems, urine patches deposited by livestock are hotspots of nutrient cycling and the most important source of nitrous oxide (N2O) emissions. Studies of the effects of urine deposition, including, for example, the determination of country-specific N2O emission factors, require natural urine for use in experiments and face challenges obtaining urine of the same composition, but of differing concentrations. Yet, few studies have explored the importance of storage conditions and processing of ruminant urine for use in subsequent gaseous emission experiments. We conducted three experiments with sheep urine to determine optimal storage conditions and whether partial freeze-drying could be used to concentrate the urine, while maintaining the constituent profile and the subsequent urine-derived gaseous emission response once applied to soil. We concluded that filtering of urine prior to storage, and storage at - 20 °C best maintains the nitrogen-containing constituent profile of sheep urine samples. In addition, based on the 14 urine chemical components determined in this study, partial lyophilisation of sheep urine to a concentrate represents a suitable approach to maintain the constituent profile at a higher overall concentration and does not alter sheep urine-derived soil gaseous emissions.


Assuntos
Liofilização/normas , Ciclo do Nitrogênio , Nitrogênio/urina , Óxido Nitroso/urina , Manejo de Espécimes/normas , Animais , Liofilização/métodos , Ovinos , Manejo de Espécimes/métodos
16.
Glob Change Biol Bioenergy ; 12(6): 445-457, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32612682

RESUMO

The application of organic materials to soil can recycle nutrients and increase organic matter in agricultural lands. Digestate can be used as a nutrient source for crop production but it has also been shown to stimulate greenhouse gas (GHG) emissions from amended soils. While edaphic factors, such as soil texture and pH, have been shown to be strong determinants of soil GHG fluxes, the impact of the legacy of previous management practices is less well understood. Here we aim to investigate the impact of such legacy effects and to contrast them against soil properties to identify the key determinants of soil GHG fluxes following digestate application. Soil from an already established field experiment was used to set up a pot experiment, to evaluate N2O, CH4 and CO2 fluxes from cattle-slurry-digestate amended soils. The soil had been treated with farmyard manure, green manure or synthetic N-fertilizer, 18 months before the pot experiment was set up. Following homogenization and a preincubation stage, digestate was added at a concentration of 250 kg total N/ha eq. Soil GHG fluxes were then sampled over a 64 day period. The digestate stimulated emissions of the three GHGs compared to controls. The legacy of previous soil management was found to be a key determinant of CO2 and N2O flux while edaphic variables did not have a significant effect across the range of variables included in this experiment. Conversely, edaphic variables, in particular texture, were the main determinant of CH4 flux from soil following digestate application. Results demonstrate that edaphic factors and current soil management regime alone are not effective predictors of soil GHG flux response following digestate application. Knowledge of the site management in terms of organic amendments is required to make robust predictions of the likely soil GHG flux response following digestate application to soil.

17.
J Environ Qual ; 49(5): 1092-1109, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33016455

RESUMO

Adequately estimating soil nitrous oxide (N2 O) emissions using static chambers is challenging due to the high spatial variability and episodic nature of these fluxes. We discuss how to design experiments using static chambers to better account for this variability and reduce the uncertainty of N2 O emission estimates. This paper is part of a series, each discussing different facets of N2 O chamber methodology. Aspects of experimental design and sampling affected by spatial variability include site selection and chamber layout, size, and areal coverage. Where used, treatment application adds a further level of spatial variability. Time of day, frequency, and duration of sampling (both individual chamber closure and overall experiment duration) affect the temporal variability captured. We also present best practice recommendations for chamber installation and sampling protocols to reduce further uncertainty. To obtain the best N2 O emission estimates, resources should be allocated to minimize the overall uncertainty in line with experiment objectives. Sometimes this will mean prioritizing individual flux measurements and increasing their accuracy and precision by, for example, collecting four or more headspace samples during each chamber closure. However, where N2 O fluxes are exceptionally spatially variable (e.g., in heterogeneous agricultural landscapes, such as uneven and woody grazed pastures), using available resources to deploy more chambers with fewer headspace samples per chamber may be beneficial. Similarly, for particularly episodic N2 O fluxes, generated for example by irrigation or freeze-thaw cycles, increasing chamber sampling frequency will improve the accuracy and reduce the uncertainty of temporally interpolated N2 O fluxes.


Assuntos
Monitoramento Ambiental , Projetos de Pesquisa , Agricultura , Óxido Nitroso/análise , Solo
18.
Sci Total Environ ; 695: 133786, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31422321

RESUMO

Extensively grazed grasslands are understudied in terms of their contribution to greenhouse gas (GHG) emissions from livestock production. Mountains, moorlands and heath occupy 18% of the UK land area, however, in situ studies providing high frequency N2O emissions from sheep urine deposited to such areas are lacking. Organic soils typical of these regions may provide substrates for denitrification-related N2O emissions, however, acidic and anoxic conditions may inhibit nitrification (and associated emissions from nitrification and denitrification). We hypothesised urine N2O-N emission factors (EFs) would be lower than the UK country-specific and IPCC default value for urine, which is based on lowland measurements. Using automated GHG sampling chambers, N2O emissions were determined from real sheep urine (930 kg N ha-1) and artificial urine (920 kg N ha-1) applied in summer, and from an artificial urine treatment (1120 kg N ha-1) and a combined NO3- and glucose treatment (106 kg N ha-1; 213 kg C ha-1) in autumn. The latter treatment provided an assessment of the soils capacity for denitrification under non-substrate limiting conditions. The artificial urine-N2O EF was 0.01 ±â€¯0.00% of the N applied in summer and 0.00 ±â€¯0.00% of the N applied in autumn. The N2O EF for real sheep urine applied in summer was 0.01 ±â€¯0.02%. A higher flux was observed in only one replicate of the real urine treatment, relating to one chamber where an increase in soil solution NO3- was observed. No lag phase in N2O emission was evident following application of the NO3- and glucose treatment, which emitted 0.69 ±â€¯0.15% of the N applied. This indicates nitrification rates are the bottle-neck for N2O emissions in upland organic soils. We calculated the potential impact of using hill-grazing specific urine N2O EFs on the UK inventory of N2O emissions from sheep excreta, and found a reduction of ca. 43% in comparison to the use of a country-specific excretal EF.


Assuntos
Agricultura , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Pradaria , Dióxido de Nitrogênio/análise , Animais , Desnitrificação , Herbivoria , Nitrificação , Ovinos , Solo
19.
Sci Total Environ ; 685: 428-441, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31176228

RESUMO

This study argues that several metrics are necessary to build up a picture of yield gain and nitrogen losses for ryegrass sheep pastures. Metrics of resource use efficiency, nitrous oxide emission factor, leached and emitted nitrogen per unit product are used to encompass yield gain and losses relating to nitrogen. These metrics are calculated from field system simulations using the DAYCENT model, validated from field sensor measurements and observations relating to crop yield, fertilizer applied, ammonium in soil and nitrate in soil and water, nitrous oxide and soil moisture. Three ryegrass pastures with traditional management for sheep grazing and silage are studied. As expected, the metrics between long-term ryegrass swards in this study are not very dissimilar. Slight differences between simulations of different field systems likely result from varying soil bulk density, as revealed by a sensitivity analysis applied to DAYCENT. The field with the highest resource use efficiency was also the field with the lowest leached inorganic nitrogen per unit product, and vice versa. Field system simulation using climate projections indicates an increase in nitrogen loss to water and air, with a corresponding increase in biomass. If we simulate both nitrogen loss by leaching and by gaseous emission, we obtain a fuller picture. Under climate projections, the field with the lowest determined nitrous oxide emissions factor, had a relatively high leached nitrogen per product amongst the three fields. When management differences were investigated, the amount of nitrous oxide per unit biomass was found to be significantly higher for an annual management of grazing only, than a silage harvest plus grazing, likely relating to the increased period of livestock on pasture. This work emphasizes how several metrics validated by auto-sampled data provide a measure of nitrogen loss, efficiency and best management practise.


Assuntos
Agricultura/métodos , Lolium/crescimento & desenvolvimento , Nitrogênio/análise , Biomassa , Clima , Monitoramento Ambiental , Fertilizantes , Óxido Nitroso/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA