Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 21(1): 132-141, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38129618

RESUMO

Multiphoton microscopy can resolve fluorescent structures and dynamics deep in scattering tissue and has transformed neural imaging, but applying this technique in vivo can be limited by the mechanical and optical constraints of conventional objectives. Short working distance objectives can collide with compact surgical windows or other instrumentation and preclude imaging. Here we present an ultra-long working distance (20 mm) air objective called the Cousa objective. It is optimized for performance across multiphoton imaging wavelengths, offers a more than 4 mm2 field of view with submicrometer lateral resolution and is compatible with commonly used multiphoton imaging systems. A novel mechanical design, wider than typical microscope objectives, enabled this combination of specifications. We share the full optical prescription, and report performance including in vivo two-photon and three-photon imaging in an array of species and preparations, including nonhuman primates. The Cousa objective can enable a range of experiments in neuroscience and beyond.


Assuntos
Corantes , Microscopia de Fluorescência por Excitação Multifotônica , Animais , Microscopia de Fluorescência por Excitação Multifotônica/métodos
2.
Nat Rev Neurosci ; 21(2): 80-92, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31911627

RESUMO

Cortical gain regulation allows neurons to respond adaptively to changing inputs. Neural gain is modulated by internal and external influences, including attentional and arousal states, motor activity and neuromodulatory input. These influences converge to a common set of mechanisms for gain modulation, including GABAergic inhibition, synaptically driven fluctuations in membrane potential, changes in cellular conductance and changes in other biophysical neural properties. Recent work has identified GABAergic interneurons as targets of neuromodulatory input and mediators of state-dependent gain modulation. Here, we review the engagement and effects of gain modulation in the cortex. We highlight key recent findings that link phenomenological observations of gain modulation to underlying cellular and circuit-level mechanisms. Finally, we place these cellular and circuit interactions in the larger context of their impact on perception and cognition.


Assuntos
Córtex Cerebral/fisiologia , Neurônios/fisiologia , Animais , Nível de Alerta/fisiologia , Atenção/fisiologia , Humanos , Aprendizagem/fisiologia , Percepção/fisiologia
3.
Cell ; 142(2): 189-93, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20655460

RESUMO

Interneurons in the neocortex of the brain are small, locally projecting inhibitory GABAergic cells with a broad array of anatomical and physiological properties. The diversity of interneurons is believed to be crucial for regulating myriad operations in the neocortex. Here, we describe current theories about how interneuron diversity may support distinct neocortical processes that underlie perception.


Assuntos
Interneurônios/fisiologia , Neocórtex/citologia , Animais , Humanos , Rede Nervosa
4.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38365273

RESUMO

Traumatic brain injury (TBI) is the leading cause of death in young people and can cause cognitive and motor dysfunction and disruptions in functional connectivity between brain regions. In human TBI patients and rodent models of TBI, functional connectivity is decreased after injury. Recovery of connectivity after TBI is associated with improved cognition and memory, suggesting an important link between connectivity and functional outcome. We examined widespread alterations in functional connectivity following TBI using simultaneous widefield mesoscale GCaMP7c calcium imaging and electrocorticography (ECoG) in mice injured using the controlled cortical impact (CCI) model of TBI. Combining CCI with widefield cortical imaging provides us with unprecedented access to characterize network connectivity changes throughout the entire injured cortex over time. Our data demonstrate that CCI profoundly disrupts functional connectivity immediately after injury, followed by partial recovery over 3 weeks. Examining discrete periods of locomotion and stillness reveals that CCI alters functional connectivity and reduces theta power only during periods of behavioral stillness. Together, these findings demonstrate that TBI causes dynamic, behavioral state-dependent changes in functional connectivity and ECoG activity across the cortex.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Humanos , Camundongos , Animais , Adolescente , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Modelos Animais de Doenças , Córtex Cerebral/diagnóstico por imagem , Cognição
5.
Mol Psychiatry ; 28(7): 3133-3143, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37069344

RESUMO

GABAergic inhibition plays an important role in the establishment and maintenance of cortical circuits during development. Neuregulin 1 (Nrg1) and its interneuron-specific receptor ErbB4 are key elements of a signaling pathway critical for the maturation and proper synaptic connectivity of interneurons. Using conditional deletions of the ERBB4 gene in mice, we tested the role of this signaling pathway at two developmental timepoints in parvalbumin-expressing (PV) interneurons, the largest subpopulation of cortical GABAergic cells. Loss of ErbB4 in PV interneurons during embryonic, but not late postnatal development leads to alterations in the activity of excitatory and inhibitory cortical neurons, along with severe disruption of cortical temporal organization. These impairments emerge by the end of the second postnatal week, prior to the complete maturation of the PV interneurons themselves. Early loss of ErbB4 in PV interneurons also results in profound dysregulation of excitatory pyramidal neuron dendritic architecture and a redistribution of spine density at the apical dendritic tuft. In association with these deficits, excitatory cortical neurons exhibit normal tuning for sensory inputs, but a loss of state-dependent modulation of the gain of sensory responses. Together these data support a key role for early developmental Nrg1/ErbB4 signaling in PV interneurons as a powerful mechanism underlying the maturation of both the inhibitory and excitatory components of cortical circuits.


Assuntos
Células Piramidais , Transdução de Sinais , Animais , Camundongos , Interneurônios/metabolismo , Neuregulina-1/metabolismo , Neurônios/metabolismo , Parvalbuminas/metabolismo , Células Piramidais/metabolismo , Receptor ErbB-4/genética
6.
Nat Methods ; 17(1): 107-113, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31686040

RESUMO

Spontaneous and sensory-evoked activity propagates across varying spatial scales in the mammalian cortex, but technical challenges have limited conceptual links between the function of local neuronal circuits and brain-wide network dynamics. We present a method for simultaneous cellular-resolution two-photon calcium imaging of a local microcircuit and mesoscopic widefield calcium imaging of the entire cortical mantle in awake mice. Our multi-scale approach involves a microscope with an orthogonal axis design where the mesoscopic objective is oriented above the brain and the two-photon objective is oriented horizontally, with imaging performed through a microprism. We also introduce a viral transduction method for robust and widespread gene delivery in the mouse brain. These approaches allow us to identify the behavioral state-dependent functional connectivity of pyramidal neurons and vasoactive intestinal peptide-expressing interneurons with long-range cortical networks. Our imaging system provides a powerful strategy for investigating cortical architecture across a wide range of spatial scales.


Assuntos
Encéfalo/fisiologia , Cálcio/metabolismo , Córtex Cerebral/fisiologia , Rede Nervosa/fisiologia , Neuroimagem/métodos , Neurônios/fisiologia , Fótons , Animais , Comportamento Animal , Encéfalo/citologia , Córtex Cerebral/citologia , Interneurônios/citologia , Interneurônios/fisiologia , Camundongos , Neurônios/citologia , Células Piramidais/citologia , Células Piramidais/fisiologia , Peptídeo Intestinal Vasoativo/metabolismo
7.
Nat Methods ; 17(12): 1262-1271, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33139894

RESUMO

Achieving a comprehensive understanding of brain function requires multiple imaging modalities with complementary strengths. We present an approach for concurrent widefield optical and functional magnetic resonance imaging. By merging these modalities, we can simultaneously acquire whole-brain blood-oxygen-level-dependent (BOLD) and whole-cortex calcium-sensitive fluorescent measures of brain activity. In a transgenic murine model, we show that calcium predicts the BOLD signal, using a model that optimizes a gamma-variant transfer function. We find consistent predictions across the cortex, which are best at low frequency (0.009-0.08 Hz). Furthermore, we show that the relationship between modality connectivity strengths varies by region. Our approach links cell-type-specific optical measurements of activity to the most widely used method for assessing human brain function.


Assuntos
Mapeamento Encefálico/métodos , Proteínas de Ligação ao Cálcio/metabolismo , Córtex Cerebral/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Animais , Gasometria , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Fluorescência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Transgênicos , Oxigênio/análise
8.
J Neurosci ; 41(5): 813-822, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33431633

RESUMO

The sensory and cognitive abilities of the mammalian neocortex are underpinned by intricate columnar and laminar circuits formed from an array of diverse neuronal populations. One approach to determining how interactions between these circuit components give rise to complex behavior is to investigate the rules by which cortical circuits are formed and acquire functionality during development. This review summarizes recent research on the development of the neocortex, from genetic determination in neural stem cells through to the dynamic role that specific neuronal populations play in the earliest circuits of neocortex, and how they contribute to emergent function and cognition. While many of these endeavors take advantage of model systems, consideration will also be given to advances in our understanding of activity in nascent human circuits. Such cross-species perspective is imperative when investigating the mechanisms underlying the dysfunction of early neocortical circuits in neurodevelopmental disorders, so that one can identify targets amenable to therapeutic intervention.


Assuntos
Neocórtex/citologia , Neocórtex/crescimento & desenvolvimento , Rede Nervosa/citologia , Rede Nervosa/crescimento & desenvolvimento , Células-Tronco Neurais/fisiologia , Neurônios/fisiologia , Animais , Humanos , Lógica
9.
Cereb Cortex ; 30(5): 3074-3086, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31800015

RESUMO

Recent work suggests an important role for cortical-subcortical networks in seizure-related loss of consciousness. Temporal lobe seizures disrupt subcortical arousal systems, which may lead to depressed cortical function and loss of consciousness. Extracellular recordings show ictal neocortical slow waves at about 1 Hz, but it is not known whether these simply represent seizure propagation or alternatively deep sleep-like activity, which should include cortical neuronal Up and Down states. In this study, using in vivo whole-cell recordings in a rat model of focal limbic seizures, we directly examine the electrophysiological properties of cortical neurons during seizures and deep anesthesia. We found that during seizures, the membrane potential of frontal cortical secondary motor cortex layer 5 neurons fluctuates between Up and Down states, with decreased input resistance and increased firing rate in Up states when compared to Down states. Importantly, Up and Down states in seizures are not significantly different from those in deep anesthesia, in terms of membrane potential, oscillation frequency, firing rate, and input resistance. By demonstrating these fundamental similarities in cortical electrophysiology between deep anesthesia and seizures, our results support the idea that a state of decreased cortical arousal may contribute to mechanisms of loss of consciousness during seizures.


Assuntos
Potenciais de Ação/fisiologia , Ondas Encefálicas/fisiologia , Córtex Cerebral/fisiopatologia , Neurônios/fisiologia , Convulsões/fisiopatologia , Animais , Eletrodos Implantados , Feminino , Ratos , Ratos Sprague-Dawley
11.
Cereb Cortex ; 28(10): 3399-3413, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28968898

RESUMO

The GABAergic system is regulated by the brain-derived neurotrophic factor (BDNF)/Tropomyosin-related kinase B (TrkB) pathway, but the cell-intrinsic role of TrkB signaling in parvalbumin cortical interneuron development and function is unclear. We performed conditional ablation of the TrkB receptor in parvalbumin-expressing (PV) interneurons to study whether postnatal loss of TrkB in parvalbumin cells affects their survival, connectivity, spontaneous and evoked neuronal activity and behavior. Using in vivo recordings of local field potentials, we found reduced gamma oscillations in the sensory cortex of PVcre+; TrkBF/F conditional knockout mice (TrkB cKO), along with increased firing of putative excitatory neurons. There was a significant downregulation in parvalbumin neuron number in cerebral and cerebellar cortices of TrkB cKO mice. In addition, inhibitory synaptic connections between basket cells and pyramidal neurons were profoundly reduced in the neocortex of TrkB cKO mice and there was a loss of cortical volume. TrkB cKO mice also showed profound hyperactivity, stereotypies, motor deficits and learning/memory defects. Our findings demonstrate that the targeting and/or synapse formation of PV-expressing basket cells with principal excitatory neurons require TrkB signaling in parvalbumin cells. Disruption of this signaling has major consequences for parvalbumin interneuron connectivity, network dynamics, cognitive and motor behavior.


Assuntos
Comportamento Animal , Córtex Cerebral/citologia , Córtex Cerebral/fisiopatologia , Interneurônios , Glicoproteínas de Membrana/genética , Neurônios , Proteínas Tirosina Quinases/genética , Animais , Fenômenos Eletrofisiológicos/genética , Potenciais Evocados/fisiologia , Deficiências da Aprendizagem/genética , Deficiências da Aprendizagem/psicologia , Glicoproteínas de Membrana/deficiência , Transtornos da Memória/genética , Transtornos da Memória/psicologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/psicologia , Neocórtex/citologia , Parvalbuminas/biossíntese , Parvalbuminas/genética , Proteínas Tirosina Quinases/deficiência , Células Piramidais , Análise de Sobrevida
12.
J Neurosci ; 37(45): 10826-10834, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29118211

RESUMO

A substantial portion of our sensory experience happens during active behaviors such as walking around or paying attention. How do sensory systems work during such behaviors? Neural processing in sensory systems can be shaped by behavior in multiple ways ranging from a modulation of responsiveness or sharpening of tuning to a dynamic change of response properties or functional connectivity. Here, we review recent findings on the modulation of sensory processing during active behaviors in different systems: insect vision, rodent thalamus, and rodent sensory cortices. We discuss the circuit-level mechanisms that might lead to these modulations and their potential role in sensory function. Finally, we highlight the open questions and future perspectives of this exciting new field.


Assuntos
Movimento/fisiologia , Sensação/fisiologia , Atenção/fisiologia , Cognição/fisiologia , Humanos , Locomoção/fisiologia
13.
J Neurosci ; 36(41): 10496-10504, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27733601

RESUMO

γ oscillations (20-80 Hz) are associated with sensory processing, cognition, and memory, and focused attention in animals and humans. γ activity can arise from several neural mechanisms in the cortex and hippocampus and can vary across circuits, behavioral states, and developmental stages. γ oscillations are nonstationary, typically occurring in short bouts, and the peak frequency of this rhythm is modulated by stimulus parameters. In addition, the participation of excitatory and inhibitory neurons in the γ rhythm varies across local circuits and conditions, particularly in the cortex. Although these dynamics present a challenge to interpreting the functional role of γ oscillations, these patterns of activity emerge from synaptic interactions among excitatory and inhibitory neurons and thus provide important insight into local circuit operations.


Assuntos
Encéfalo/fisiologia , Ritmo Gama/fisiologia , Potenciais de Ação/fisiologia , Animais , Atenção/fisiologia , Córtex Cerebral/fisiologia , Hipocampo/fisiologia , Humanos , Inibição Neural/fisiologia , Vias Neurais/fisiologia
14.
Annu Rev Biomed Eng ; 16: 103-29, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-25014785

RESUMO

Genetically encoded optical actuators and indicators have changed the landscape of neuroscience, enabling targetable control and readout of specific components of intact neural circuits in behaving animals. Here, we review the development of optical neural interfaces, focusing on hardware designed for optical control of neural activity, integrated optical control and electrical readout, and optical readout of population and single-cell neural activity in freely moving mammals.


Assuntos
Engenharia Biomédica/métodos , Optogenética/métodos , Animais , Encéfalo/fisiologia , Eletrodos , Eletrofisiologia/métodos , Humanos , Luz , Camundongos , Neurônios Motores/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Neurociências , Óptica e Fotônica , Fótons , Ratos , Silício/química
15.
Epilepsia ; 56(12): e198-202, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26530287

RESUMO

Focal temporal lobe seizures often cause impaired cortical function and loss of consciousness. Recent work suggests that the mechanism for depressed cortical function during focal seizures may depend on decreased subcortical cholinergic arousal, which leads to a sleep-like state of cortical slow-wave activity. To test this hypothesis, we sought to directly activate subcortical cholinergic neurons during focal limbic seizures to determine the effects on cortical function. Here we used an optogenetic approach to selectively stimulate cholinergic brainstem neurons in the pedunculopontine tegmental nucleus during focal limbic seizures induced in a lightly anesthetized rat model. We found an increase in cortical gamma activity and a decrease in delta activity in response to cholinergic stimulation. These findings support the mechanistic role of reduced subcortical cholinergic arousal in causing cortical dysfunction during seizures. Through further work, electrical or optogenetic stimulation of subcortical arousal networks may ultimately lead to new treatments aimed at preventing cortical dysfunction during seizures.


Assuntos
Tronco Encefálico/fisiopatologia , Córtex Cerebral/fisiopatologia , Neurônios Colinérgicos/fisiologia , Lobo Límbico/fisiopatologia , Optogenética/métodos , Convulsões/fisiopatologia , Animais , Channelrhodopsins , Modelos Animais de Doenças , Feminino , Masculino , Núcleo Tegmental Pedunculopontino/fisiopatologia , Estimulação Luminosa , Ratos , Ratos Long-Evans
16.
Nature ; 459(7247): 663-7, 2009 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-19396156

RESUMO

Cortical gamma oscillations (20-80 Hz) predict increases in focused attention, and failure in gamma regulation is a hallmark of neurological and psychiatric disease. Current theory predicts that gamma oscillations are generated by synchronous activity of fast-spiking inhibitory interneurons, with the resulting rhythmic inhibition producing neural ensemble synchrony by generating a narrow window for effective excitation. We causally tested these hypotheses in barrel cortex in vivo by targeting optogenetic manipulation selectively to fast-spiking interneurons. Here we show that light-driven activation of fast-spiking interneurons at varied frequencies (8-200 Hz) selectively amplifies gamma oscillations. In contrast, pyramidal neuron activation amplifies only lower frequency oscillations, a cell-type-specific double dissociation. We found that the timing of a sensory input relative to a gamma cycle determined the amplitude and precision of evoked responses. Our data directly support the fast-spiking-gamma hypothesis and provide the first causal evidence that distinct network activity states can be induced in vivo by cell-type-specific activation.


Assuntos
Interneurônios/fisiologia , Córtex Somatossensorial/citologia , Córtex Somatossensorial/metabolismo , Animais , Chlamydomonas reinhardtii , Eletrofisiologia , Regulação da Expressão Gênica , Técnicas de Introdução de Genes , Camundongos , Estimulação Luminosa , Células Piramidais/fisiologia , Rodopsina/genética , Rodopsina/metabolismo
17.
bioRxiv ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38496673

RESUMO

GABAergic inhibition is critical to the proper development of neocortical circuits. However, GABAergic interneurons are highly diverse and the developmental roles of distinct inhibitory subpopulations remain largely unclear. Dendrite-targeting, somatostatin-expressing interneurons (SST-INs) in the mature cortex regulate synaptic integration and plasticity in excitatory pyramidal neurons (PNs) and exhibit unique feature selectivity. Relatively little is known about early postnatal SST-IN activity or impact on surrounding local circuits. We examined juvenile SST-INs and PNs in mouse primary visual cortex. PNs exhibited stable visual responses and feature selectivity from eye opening onwards. In contrast, SST-INs developed visual responses and feature selectivity during the third postnatal week in parallel with a rapid increase in excitatory synaptic innervation. SST-INs largely exerted a multiplicative effect on nearby PN visual responses at all ages, but this impact increased over time. Our results identify a developmental window for the emergence of an inhibitory circuit mechanism for normalization.

18.
Nat Neurosci ; 27(1): 148-158, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38036743

RESUMO

Experimental work across species has demonstrated that spontaneously generated behaviors are robustly coupled to variations in neural activity within the cerebral cortex. Functional magnetic resonance imaging data suggest that temporal correlations in cortical networks vary across distinct behavioral states, providing for the dynamic reorganization of patterned activity. However, these data generally lack the temporal resolution to establish links between cortical signals and the continuously varying fluctuations in spontaneous behavior observed in awake animals. Here, we used wide-field mesoscopic calcium imaging to monitor cortical dynamics in awake mice and developed an approach to quantify rapidly time-varying functional connectivity. We show that spontaneous behaviors are represented by fast changes in both the magnitude and correlational structure of cortical network activity. Combining mesoscopic imaging with simultaneous cellular-resolution two-photon microscopy demonstrated that correlations among neighboring neurons and between local and large-scale networks also encode behavior. Finally, the dynamic functional connectivity of mesoscale signals revealed subnetworks not predicted by traditional anatomical atlas-based parcellation of the cortex. These results provide new insights into how behavioral information is represented across the neocortex and demonstrate an analytical framework for investigating time-varying functional connectivity in neural networks.


Assuntos
Neocórtex , Neurônios , Camundongos , Animais , Neurônios/fisiologia , Imageamento por Ressonância Magnética , Vigília , Neocórtex/diagnóstico por imagem , Mapeamento Encefálico/métodos , Vias Neurais/fisiologia
19.
Neuron ; 111(3): 297-299, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36731427

RESUMO

Visually evoked synchrony in the primary visual cortex has proven to be a robust model for examining circuit interactions. In this issue of Neuron, Veit et al.1 highlight a previously unappreciated role for VIP interneurons in regulating local and long-range patterns of coordinated neural activity.


Assuntos
Córtex Visual , Córtex Visual/fisiologia , Interneurônios/fisiologia , Neurônios/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
20.
bioRxiv ; 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37873181

RESUMO

Communication among different neocortical areas is largely thought to be mediated by long-range synaptic interactions between cortical neurons, with the thalamus providing only an initial relay of information from the sensory periphery. Higher-order thalamic nuclei receive strong synaptic inputs from the cortex and send robust projections back to other cortical areas, providing a distinct and potentially critical route for cortico-cortical communication. However, the relative contributions of corticocortical and thalamocortical inputs to higher-order cortical function remain unclear. Using imaging of cortical neurons and projection axon terminals in combination with optogenetic manipulations, we find that the higher-order visual thalamus of mice conveys a specialized stream of information to higher-order visual cortex. Whereas corticocortical projections from lower cortical areas convey robust visual information, higher-order thalamocortical projections convey strong behavioral state information. Together, these findings suggest a key role for higher-order thalamus in providing contextual signals that flexibly modulate sensory processing in higher-order cortex.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA