Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Curr Microbiol ; 81(1): 20, 2023 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-38008776

RESUMO

Stenotrophomonas maltophilia is an opportunistic human pathogen associated with nosocomial and community-acquired infections. We have conducted a microbiological and genomic surveillance study of broad-spectrum cephalosporin- and carbapenem-resistant Gram-negative bacteria colonizing wild birds inhabiting the Brazilian Amazonia. Strikingly, two S. maltophilia strains (SM79 and SM115) were identified in Plain-throated antwren (Isleria hauxwelli) passerines affected by Amazonian fragmentation and degradation. Noteworthy, SM79 and SM115 strains belonged to new sequence types (STs) ST474 and ST473, respectively, displaying resistance to broad-spectrum ß-lactams, aminoglycosides and/or fluoroquinolones. In this regard, resistome analysis confirmed efflux pumps (smeABC, smeDEF, emrAB-tolC and macB), blaL1 and blaL2, aph(3')-IIc and aac(6')-Iak, and Smqnr resistance genes. Comparative phylogenomic analysis with publicly available S. maltophilia genomes clustered ST473 and ST474 with human strains, whereas the ST474 was also grouped with S. maltophilia strains isolated from water and poultry samples. In summary, we report two novel sequence types of S. maltophilia colonizing wild Amazonian birds. The presence of opportunistic multidrug-resistant pathogens in wild birds, from remotes areas, could represent an ecological problem since these animals could easily promote long-distance dispersal of medically important antimicrobial-resistant bacteria. Therefore, while our results could provide a baseline for future epidemiological genomic studies, considering the limited information regarding S. maltophilia circulating among wild animals, additional studies are necessary to evaluate the clinical impact and degree of pathogenicity of this human opportunistic pathogen in wild birds.


Assuntos
Infecções por Bactérias Gram-Negativas , Stenotrophomonas maltophilia , Humanos , Animais , Stenotrophomonas maltophilia/genética , Brasil , Animais Selvagens , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/microbiologia
2.
Genomics ; 114(1): 378-383, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34923088

RESUMO

Convergence of resistance and virulence in Klebsiella pneumoniae is a critical public health issue worldwide. A multidrug-resistant CTX-M-15-producing K. pneumoniae (TIES-4900 strain) was isolated from a highly impacted urban river, in Brazil. The genome was sequenced by MiSeq Illumina platform and de novo assembled using Unicycler. In silico prediction was accomplished by bioinformatics tools. The size of the genome is 5.4 Mb with 5145 protein-coding genes. TIES-4900 strain belonged to the sequence type ST15, yersiniabactin sequence type YbST10, ICEKp4, KL24 (wzi-24) and O1v1 locus. Phylogenomics confirmed genomic relatedness with ST15 clones from human and animal hosts. Convergence of broad resistome (antibiotics, heavy-metals and biocides) and virulome, including the Kpi pilus system involved in host-pathogen interaction and persistence of ST15 clone to hospital environments, were predicted. Virulent behavior was confirmed in the Galleria mellonella infection model. This study may give genomic insights on the spread of critical-priority WHO pathogens beyond hospital settings.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Animais , Antibacterianos/farmacologia , Brasil , Células Clonais , Farmacorresistência Bacteriana Múltipla/genética , Genômica , Rios , beta-Lactamases/genética
3.
Microb Pathog ; 171: 105733, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36002114

RESUMO

Methicillin-resistant staphylococci have become leading cause of infectious diseases in humans and animals, being categorized as high priority pathogens by the World Health Organization. Although methicillin-resistant Staphylococcus sciuri (recently moved to Mammaliicoccus sciuri) has been widely reported in companion animals, there is scarce information regarding their clinical impact and genomic features. Herein, we reported the occurrence and genomic characteristics of methicillin-resistant M. sciuri recovered from fatal infections in pets admitted to an intensive care unit of a veterinary hospital, in Brazil. Two M. sciuri strains were isolated from bronchoalveolar lavage samples collected from dog (strain SS01) and cat (strain SS02) presenting with sepsis and acute respiratory distress syndrome. Both isolates displayed a multidrug-resistant profile, whereas whole-genome sequencing analysis confirmed the presence of the mecA gene, along to genetic determinant conferring resistance to macrolides, streptogramins, aminoglycosides, and trimethoprim. For both strains, the mec and crr gene complex shared high identity (≥97%) with analogue sequences from a M. sciuri isolated from a human wound infection, in the Czech Republic. Strains were assigned to the sequence type ST52 and the novel ST74. Phylogenomic analysis revealed a broad host range association of these strains with several hosts and sources, including humans, animals, food, and the environment through different years and geographic locations. Our findings demonstrate that infections caused by mecA-positive M. sciuri strains can be a serious threat for veterinary intensive care patients and the medical staff, with additional implications for One Health approaches.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Aminoglicosídeos , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Cães , Genômica , Humanos , Unidades de Terapia Intensiva , Macrolídeos , Resistência a Meticilina , Staphylococcus aureus Resistente à Meticilina/genética , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/veterinária , Staphylococcus , Estreptograminas , Trimetoprima
4.
Appl Environ Microbiol ; 87(16): e0074321, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34085857

RESUMO

Extraintestinal pathogenic Escherichia coli (ExPEC) is a leading cause of human and animal infections worldwide. The utilization of selective and differential media to facilitate the isolation and identification of E. coli from complex samples, such as water, food, sediment, and gut tissue, is common in epidemiological studies. During a surveillance study, we identified an E. coli strain isolated from human blood culture that displayed atypical light cream-colored colonies in chromogenic agar and was unable to produce ß-glucuronidase and ß-galactosidase in biochemical tests. Genomic analysis showed that the strain belongs to sequence type 59 (ST59) and phylogroup F. The evaluation in silico of 104 available sequenced lineages of ST59 complex showed that most of them belong to serotype O1:K1:H7, are ß-glucuronidase negative, and harbor a virulent genotype associated with the presence of important virulence markers such as pap, kpsE, chuA, fyuA, and yfcV. Most of them were isolated from extraintestinal human infections in diverse countries worldwide and could be clustered/subgrouped based on papAF allele analysis. Considering that all analyzed strains harbor a virulent genotype and most do not exhibit biochemical behavior typical of E. coli, we report that they could be misclassified or underestimated, especially in epidemiological studies where the screening criteria rely only on typical biochemical phenotypes, as happens when chromogenic media are used. IMPORTANCE The use of selective and differential media guides presumptive bacterial identification based on specific metabolic traits that are specific to each bacterial species. When a bacterial specimen displays an unusual phenotype in these media, this characteristic may lead to bacterial misidentification or a significant delay in its identification, putting a patient at risk depending on the infection type. In the present work, we describe a virulent E. coli sequence type (ST59) that does not produce beta-glucuronidase (GUS negative), production of which is the metabolic trait widely used for E. coli presumptive identification in diverse differential media. The recognition of this unusual metabolic trait may help in the proper identification of ST59 isolates, the identification of their reservoir, and the evaluation of the frequency of these pathogens in places where automatic identification methods are not available.


Assuntos
Infecções por Escherichia coli/microbiologia , Escherichia coli/patogenicidade , Idoso de 80 Anos ou mais , Escherichia coli/classificação , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fezes/microbiologia , Feminino , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Genótipo , Humanos , Filogenia , Virulência
5.
Microb Pathog ; 150: 104644, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33259886

RESUMO

The emergence of invasive Haemophilus influenzae infections in vaccinated patient is a public health concern. We have investigated the genomic basis of invasiveness and possible vaccine failure in H. influenzae causing invasive disease in vaccinated and unvaccinated children in Brazil. Three H. influenzae strains isolated from blood cultures of pediatric patients were sequenced. Serotype, MLST, resistome and virulome were predicted using bioinformatic tools, whereas single nucleotide polymorphisms (SNPs) analysis of cap loci and the presence of the putative virulence-enhancing IS1016-bexA partial deletion were predicted in silico. Infections were caused by H. influenzae type a (Hia), type b (Hib) and nontypeable (NTHi), belonging to international high-risk clones of sequence types ST23, ST6 and ST368, respectively, which have been identified in North American, European and Asian countries. Convergence of ampicillin resistance and virulence in Hib-ST6 was supported by blaTEM-1B and deletion in the bexA gene, whereas presence of SNPs in the cap-b locus was associated with antigenic modifications of the capsule structure. Hia-ST23 and NTHi-ST368 strains carried galU, lpsA, opsX, rfaF, iga1, lgtC and lic1/lic2 virulence genes, associated with colonization, adaptation and damage to the lung, or invasiveness. In summary, deletion in the bexA gene and presence of SNPs in the cap locus of Hib could be contributing to invasive disease and possible vaccine failure in pediatric patients, whereas serotype replacement of Hib with type "a" and NTHi strains denotes the ability of non-vaccine serotypes to re-colonize vaccinated patients. Finally, the dissemination of international high-risk clones of H. influenzae emphasizes the importance of monitoring changes in the molecular epidemiology of invasive H. influenzae disease.


Assuntos
Infecções por Haemophilus , Vacinas Anti-Haemophilus , Ásia , Brasil , Criança , Células Clonais , Genômica , Infecções por Haemophilus/epidemiologia , Infecções por Haemophilus/prevenção & controle , Haemophilus influenzae/genética , Humanos , Lactente , Tipagem de Sequências Multilocus , Sorotipagem
6.
Mol Ecol ; 29(10): 1919-1935, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32335957

RESUMO

Critical priority pathogens have globally disseminated beyond clinical settings, thereby threatening wildlife. Andean Condors (Vultur gryphus) are essential for ecosystem health and functioning, but their populations are globally near threatened and declining due to anthropogenic activities. During a microbiological and genomic surveillance study of critical priority antibiotic-resistant pathogens, we identified pandemic lineages of multidrug-resistant extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli colonizing Andean Condors admitted at two wildlife rehabilitation centres in South America. Genomic analysis revealed the presence of genes encoding resistance to hospital and healthcare agents among international E. coli clones belonging to sequence types (STs) ST162, ST602, ST1196 and ST1485. In this regard, the resistome included genes conferring resistance to clinically important cephalosporins (i.e., CTX-M-14, CTX-M-55 and CTX-M-65 ESBL genes), heavy metals (arsenic, mercury, lead, cadmium, copper, silver), pesticides (glyphosate) and domestic/hospital disinfectants, suggesting a link with anthropogenic environmental pollution. On the other hand, the presence of virulence factors, including the astA gene associated with outbreak of childhood diarrhoea and extra-intestinal disease in animals, was identified, whereas virulent behaviour was confirmed using the Galleria mellonella infection model. E. coli ST162, ST602, ST1196 and ST1485 have been previously identified in humans and food-producing animals worldwide, indicating that a wide resistome could contribute to rapid adaptation and dissemination of these clones at the human-animal-environment interface. Therefore, these results highlight that Andean Condors have been colonized by critical priority pathogens, becoming potential environmental reservoirs and/or vectors for dissemination of virulent and antimicrobial-resistant bacteria and/or their genes, in associated ecosystems and wildlife.


Assuntos
Farmacorresistência Bacteriana Múltipla , Infecções por Escherichia coli , Escherichia coli , Animais , Antibacterianos/farmacologia , Ecossistema , Escherichia coli/genética , Infecções por Escherichia coli/veterinária , Genômica , América do Sul , beta-Lactamases/genética
9.
Mar Pollut Bull ; 198: 115844, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056291

RESUMO

Mangrove ecosystems are hotspots of biodiversity, but have been threatened by anthropogenic activities. Vancomycin-resistant enterococci (VRE) are nosocomial bacteria classified as high priority by the World Health Organization (WHO). Herein, we describe the identification and genomic characteristics of a vancomycin-resistant Enterococcus faecalis strain isolated from a highly impacted mangrove ecosystem of the northeastern Brazilian, in 2021. Genomic analysis confirmed the existence of the transposon Tn1546-vanA and clinically relevant antimicrobial resistance genes, such as streptogramins, tetracycline, phenicols, and fluoroquinolones. Virulome analysis identified several genes associated to adherence, immune modulation, biofilm, and exoenzymes production. The UFSEfl strain was assigned to sequence type (ST9), whereas phylogenomic analysis with publicly available genomes from a worldwide confirmed clonal relatedness with a hospital-associated Brazilian clone. Our findings highlight the successful expansion of hospital-associated VRE in a mangrove area and shed light on the need for strengthening genomic surveillance of WHO priority pathogens in these vital ecosystems.


Assuntos
Ecossistema , Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Enterococos Resistentes à Vancomicina , Humanos , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Brasil/epidemiologia , Células Clonais , Enterococcus faecalis/genética , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/epidemiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Testes de Sensibilidade Microbiana , Vancomicina , Resistência a Vancomicina/genética , Enterococos Resistentes à Vancomicina/genética , Infecção Hospitalar/microbiologia
10.
Pathogens ; 13(1)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38251370

RESUMO

Migratory birds have contributed to the dissemination of multidrug-resistant (MDR) bacteria across the continents. A CTX-M-2-producing Escherichia coli was isolated from a black skimmer (Rynchops niger) in Southeast Brazil. The whole genome was sequenced using the Illumina NextSeq platform and de novo assembled by CLC. Bioinformatic analyses were carried out using tools from the Center for Genomic Epidemiology. The genome size was estimated at 4.9 Mb, with 4790 coding sequences. A wide resistome was detected, with genes encoding resistance to several clinically significant antimicrobials, heavy metals, and biocides. The blaCTX-M-2 gene was inserted in an In229 class 1 integron inside a ∆TnAs3 transposon located in an IncHI2/ST2 plasmid. The strain was assigned to ST5506, CH type fumC19/fimH32, serotype O8:K87, and phylogroup B1. Virulence genes associated with survival in acid conditions, increased serum survival, and adherence were also identified. These data highlight the role of migratory seabirds as reservoirs and carriers of antimicrobial resistance determinants and can help to elucidate the antimicrobial resistance dynamics under a One Health perspective.

11.
J Glob Antimicrob Resist ; 36: 135-138, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38072242

RESUMO

BACKGROUND: The global spread of extended-spectrum ß-lactamase (ESßL)-producing Escherichia coli has been considered a One Health issue that demands continuous genomic epidemiology surveillance in humans and non-human hosts. OBJECTIVES: To report the occurrence and genomic data of ESßL-producing E. coli strains isolated from South American llamas inhabiting a protected area with public access in the Andean Highlands of Peru. METHODS: Two ESßL-producing E. coli strains (E. coli L1LB and L2BHI) were identified by MALDI-TOF. Genomic DNAs were extracted and sequenced using the Illumina NextSeq platform. De novo assembly was performed by CLC Genomic Workbench and in silico prediction was accomplished by curated bioinformatics tools. SNP-based phylogenomic analysis was performed using publicly available genomes of global E. coli ST10. RESULTS: Escherichia coli L1LB generated a total of 4 000 11 and L2BHI a total of 4 002 54 paired-end reads of ca.164 × and ca. 157 ×, respectively. Both E. coli strains were assigned to serotype O8:H4, fimH41, and ST10. The blaCTX-M-65 ESßL gene, along with other medically important antimicrobial resistance genes, was predicted. Broad virulomes, including the presence of the astA gene, were confirmed. The phylogenomic analysis revealed that E. coli L1LB and L2BHI strains are closely related to isolates from companion animals and human hosts, as well as environmental strains, previously reported in North America, South America, Africa, and Asia. CONCLUSION: Presence of ESßL-producing E. coli ST10 in South American camelids with historical and cultural importance supports successful expansion of international clones of priority pathogens in natural areas with public access.


Assuntos
Camelídeos Americanos , Infecções por Escherichia coli , Animais , Humanos , Escherichia coli/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Peru , Antibacterianos/farmacologia , beta-Lactamases/genética , Genômica
12.
Microb Drug Resist ; 29(7): 296-301, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37155698

RESUMO

The global dissemination of extended-spectrum-ß-lactamase (ESBL)-producing Escherichia coli has been considered a critical issue within a One Health framework. The aim of this study was to perform a genomic investigation of an ESBL-producing E. coli strain belonging to the globally spread sequence type/clonal complex ST90/CC23, isolated from gastrointestinal tract of a dog, in Brazil. Besides CTX-M-15 ESBL, this E. coli isolate carried mutations conferring resistance to human and veterinary fluoroquinolones (GyrA [Ser83Leu, Asp87Asn], ParC [Ser80Ile] and ParE [Ser458Ala]), and resistance determinants to disinfectants and pesticides. Noteworthy, phylogenomic analysis revealed that this multidrug E. coli strain clustered with ST90 lineages isolated from human, dog, and livestock in Brazil. The phylogenetic tree also revealed that this E. coli strain shares a common ancestor with isolates from the United States, Russia, Germany, and China, highlighting the potential global spreading of this clone. In summary, we report genomic data of CTX-M-15-positive E.coli ST90 colonizing a pet. Colonization of companion animals by critical resistant pathogens highlights the need for close monitoring to better understand the epidemiology and genetic factors contributing for successful adaptation of global clones at the human-animal interface.


Assuntos
Infecções por Escherichia coli , Saúde Única , Animais , Cães , Humanos , Escherichia coli , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/epidemiologia , Filogenia , Animais de Estimação , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
13.
One Health ; 17: 100594, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37448770

RESUMO

The spread of carbapenemase-producing Klebsiella pneumoniae beyond hospital settings is a global critical issue within a public health and One Health perspective. Another worrisome concern is the convergence of virulence and resistance in healthcare-associated lineages of K. pneumoniae leading to unfavorable clinical outcomes. During a surveillance study of WHO critical priority pathogens circulating in an impacted urban river in São Paulo, Brazil, we isolate two hypermucoviscous and multidrug-resistant K. pneumoniae strains (PINH-4250 and PINH-4900) from two different locations near to medical centers. Genomic investigation revealed that both strains belonged to the global high-risk sequence type (ST) ST11, carrying the blaKPC-2 carbapenemase gene, besides other medically important antimicrobial resistance determinants. A broad virulome was predicted and associated with hypervirulent behavior in the Galleria mellonella infection model. Comparative phylogenomic analysis of PINH-4250 and PINH-4900 along to an international collection of publicly available genomes of K. pneumoniae ST11 revealed that both environmental strains were closely related to hospital-associated K. pneumoniae strains recovered from clinical samples between 2006 and 2018, in São Paulo city. Our findings support that healthcare-associated KPC-2-positive K. pneumoniae of ST11 clone has successfully expanded beyond hospital settings. In summary, aquatic environments can become potential sources of international clones of K. pneumoniae displaying carbapenem resistance and hypervirulent behaviors, which is a critical issue within a One Health perspective.

14.
One Health ; 17: 100586, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37415721

RESUMO

Wild birds have emerged as novel reservoirs and potential spreaders of antibiotic-resistant priority pathogens, being proposed as sentinels of anthropogenic activities related to the use of antimicrobial compounds. The aim of this study was to investigate the occurrence and genomic features of extended-spectrum ß-lactamase (ESBL)-producing bacteria in wild birds in South America. In this regard, we have identified two ESBL (CTX-M-55 and CTX-M-65)-positive Escherichia coli (UNB7 and GP188 strains) colonizing Creamy-bellied Thrush (Turdus amaurochalinus) and Variable Hawk (Geranoaetus polyosoma) inhabiting synanthropic and wildlife environments from Brazil and Chile, respectively. Whole-genome sequence (WGS) analysis revealed that E. coli UNB7 and GP188 belonged to the globally disseminated clone ST602, carrying a wide resistome against antibiotics (ß-lactams), heavy metals (arsenic, copper, mercury), disinfectants (quaternary ammonium compounds), and pesticides (glyphosate). Additionally, E. coli UNB7 and GP188 strains harbored virulence genes encoding hemolysin E, type II and III secretion systems, increased serum survival, adhesins and siderophores. SNP-based phylogenomic analysis, using an international genome database, revealed genomic relatedness (19-363 SNP differences) of GP188 with livestock and poultry strains, and genomic relatedness (61-318 differences) of UNB7 with environmental, human and livestock strains (Table S1), whereas phylogeographical analysis confirmed successful expansion of ST602 as a global clone of One Health concern. In summary, our results support that ESBL-producing E. coli ST602 harboring a wide resistome and virulome have begun colonizing wild birds in South America, highlighting a potential new reservoir of critical priority pathogens.

15.
Environ Microbiol Rep ; 15(2): 119-128, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36629129

RESUMO

Salmonella serovars Heidelberg and Minnesota encoding antimicrobial resistance to third-generation cephalosporins and fluoroquinolones are often detected in poultry/poultry meat. We analysed the genomes of 10 Salmonella Heidelberg (SH) and 4 Salmonella Minnesota (SM) from faecal isolates of Brazilian poultry. These featured virulent and multidrug-resistant characteristics, with AmpC beta-lactamase (blaCMY-2 ) predominance (9/14), for all SM (4/4) and some SH (3/10) located on IncC plasmid replicons. IncC carrying blaCTX-M-2 was only detected among SH (3/10). Mutation in the gyrA/parC genes was present in all SH, whereas SM harboured parC mutation plus qnrB19 on ColRNAI plasmids (3/4). In silico resistance overall corroborated with phenotypic results. Core genome phylogenies showed close clustering and high similarities between the Brazilian and poultry meat/food isolates from Europe, and to human isolates from European countries with documented import of Brazilian poultry meat. Conjugation assays with SM successfully transferred blaCMY-2 , and qnrB19 to an Escherichia coli recipient. The findings reinforce the ongoing antimicrobial resistance acquisition of SH and Minnesota and the risks for disseminating resistant strains and/or mobile elements which may increasingly affect importing countries and the need for controlling AMR in major poultry-exporting countries like Brazil.


Assuntos
Antibacterianos , Fluoroquinolonas , Animais , Humanos , Fluoroquinolonas/farmacologia , Antibacterianos/farmacologia , Galinhas/genética , Brasil , Farmacorresistência Bacteriana Múltipla/genética , beta-Lactamases/genética , Aves Domésticas/genética , Salmonella/genética , Escherichia coli/genética , Plasmídeos/genética , Cefalosporinas/farmacologia , Genômica
16.
One Health ; 16: 100476, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36691392

RESUMO

WHO priority pathogens have disseminated beyond hospital settings and are now being detected in urban and wild animals worldwide. In this regard, synanthropic animals such as urban pigeons (Columba livia) and rodents (Rattus rattus, Rattus norvegicus and Mus musculus) are of interest to public health due to their role as reservoirs of pathogens that can cause severe diseases. These animals usually live in highly contaminated environments and have frequent interactions with humans, domestic animals, and food chain, becoming sentinels of anthropogenic activities. In this study, we report genomic data of Escherichia coli strains selected for ceftriaxone and ciprofloxacin resistance, isolated from pigeons and black rats. Genomic analysis revealed the occurrence of international clones belonging to ST10, ST155, ST224 and ST457, carrying a broad resistome to beta-lactams, aminoglycosides, trimethoprim/sulfamethoxazole, fluoroquinolones, tetracyclines and/or phenicols. SNP-based phylogenomic investigation confirmed clonal relatedness with high-risk lineages circulating at the human-animal-environmental interface globally. Our results confirm the dissemination of WHO priority CTX-M-positive E. coli in urban rodents and pigeons in Brazil, highlighting potential of these animals as infection sources and hotspot for dissemination of clinically relevant pathogens and their resistance genes, which is a critical issue within a One Health perspective.

17.
J Glob Antimicrob Resist ; 33: 256-259, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37098384

RESUMO

OBJECTIVES: The aim of this study was to perform a genomic investigation of a multiple fluoroquinolone-resistant Leclercia adecarboxylata strain isolated from a synanthropic pigeon in São Paulo, Brazil. METHODS: Whole-genome sequencing was performed using an Illumina platform, and in silico deep analyses of the resistome were performed. Comparative phylogenomics was conducted using a global collection of publicly available genomes of L. adecarboxylata strains isolated from human and animal hosts. RESULTS: L. adecarboxylata strain P62P1 displayed resistance to human (norfloxacin, ofloxacin, ciprofloxacin, and levofloxacin) and veterinary (enrofloxacin) fluoroquinolones. This multiple quinolone-resistant profile was associated with mutations in the gyrA (S83I) and parC (S80I) genes and the presence of the qnrS gene within an ISKpn19-orf-qnrS1-ΔIS3-blaLAP-2 module, previously identified in L. adecarboxylata strains isolated from pig feed and faeces in China. Genes associated with arsenic, silver, copper, and mercury resistance were also predicted. Phylogenomic analysis revealed clustering (378-496 single nucleotide polymorphism differences) with two L. adecarboxylata strains isolated from human and fish sources in China and Portugal, respectively. CONCLUSIONS: L. adecarboxylata is a Gram-negative bacterium of the Enterobacterales order and is considered an emergent opportunistic pathogen. Since L. adecarboxylata has adapted to human and animal hosts, genomic surveillance is highly recommended, in order to identify the emergence and spread of resistant lineages and high-risk clones. In this regard, this study provides genomic data that can help clarify the role of synanthropic animals in the dissemination of clinically relevant L. adecarboxylata within a One Health context.


Assuntos
Columbidae , Fluoroquinolonas , Humanos , Animais , Suínos , Fluoroquinolonas/farmacologia , Brasil , DNA Girase/genética , Testes de Sensibilidade Microbiana , Genômica
18.
J Glob Antimicrob Resist ; 29: 113-115, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35189373

RESUMO

OBJECTIVES: Extended-spectrum ß-lactamase (ESBL)-producing Enterobacter cloacae complex (ECC) members have been a leading cause of severe infections in hospital setting and have lately been recognized as important pathogens for animals. In this article, we report phylogenomic data of a multidrug-resistant and CTX-M-15-positive E. hormaechei belonging to ST78 isolated from a calf with omphalitis. METHODS: Genomic DNA was extracted and sequenced using the Illumina NextSeq platform. De novo assembly was performed by Unicycler and in silico prediction accomplished by curated bioinformatics tools. Single nucleotide polymorphism (SNP)-based comparative phylogenomic analysis was conducted by using publicly available ECC genomes belonging to ST78. RESULTS: The genome size was calculated at 3 8465 40 bp, comprising 4717 total genes, 3 rRNAs, 43 tRNAs, 7 ncRNAs, and 74 pseudogenes. The animal-associated E. hormaechei (ECBEZ strain) ST78 harboured the blaCTX-M-15 ESBL gene in addition to other critically important resistance genes conferring resistance to ß-lactams, aminoglycosides, fosfomycin, phenicol, quinolones, sulphonamides, tetracyclines, and trimethoprim. Phylogenetic analysis revealed that ECBEZ is closely related to human-isolated strains from Asian and African countries. CONCLUSION: Phylogenomic analysis of CTX-M-15-producing E. hormaechei from animal infection reveals that ST78 is a successful One Health clone among ECC members. Furthermore, data presented in this study reinforce the urgent need to monitor ESBL-producing ECC members in veterinary settings.


Assuntos
Enterobacter , beta-Lactamases , Animais , Antibacterianos/farmacologia , Bovinos , Células Clonais , Enterobacter/genética , Enterobacter/isolamento & purificação , Enterobacter cloacae/genética , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/veterinária , Genoma Bacteriano , Saúde Única , Filogenia , beta-Lactamases/genética
19.
One Health ; 15: 100414, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36277105

RESUMO

Extended spectrum ß-lactamase (ESBL)-producing Klebsiella pneumoniae is a medically important pathogen that commonly causes human nosocomial infections. Since veterinary emergency and critical care services have also significantly progressed over the last decades, there are increasing reports of ESBL-producing K. pneumoniae causing hospital-associated infections in companion animals. We present microbiological and genomic analysis of a multidrug-resistant ESBL-positive K. pneumoniae (LCKp01) isolated from a fatal infection in a dog admitted to a veterinary intensive care unit. LCKp01 strain belonged to the sequence type ST392 and displays a KL27 (wzi-187) and O-locus 4 (O4). A broad resistome and presence of the bla CTX-M-15 ESBL gene were predicted. SNP-based phylogenomic analysis, using an international genome database, clustered LCKp01 (60-80 SNPs differences) with K. pneumoniae ST392 from human and animal infections, isolated at 4-year interval, whereas phylogeographical analysis confirmed successful expansion of ST392 as a global clone of One Health concern.

20.
Sci Total Environ ; 806(Pt 2): 150539, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34852430

RESUMO

Antimicrobial resistance is among the most serious public health threats of the 21st century, with great impact in terms of One Health. Among antimicrobial resistant bacteria (ARB), extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli (ESBL-EC) represent major challenges to human healthcare. Wild birds have been commonly used as environmental bioindicators of ESBL-EC. Remote locations represent a unique opportunity to evaluate the occurrence, dissemination and epidemiology of ARB in the environment. Herein we surveyed ESBL-EC in 204 cloacal swabs from six nonsynanthropic seabird species at the pristine Rocas Atoll, Brazil. We identified ESBL-EC isolates in 2.4% (5/204) of the tested seabirds, all in magnificent frigatebirds (Fregata magnificens). We isolated strains of O25b-ST131-fimH22 harboring gene blaCTX-M-8 (3 clones), ST117 harboring gene blaSHV-12, and a novel ST11350 (clonal complex 349) harboring genes blaCTX-M-55 and fosA3. All the isolates presented Extraintestinal pathogenic E. coli (ExPEC) virulence profiles. We suggest that magnificent frigatebirds may act as "flying bridges", transporting ESBL-EC and ARGs from an anthropogenically-impacted archipelago geographically close to our pristine and remote study site. The characteristics of our isolates suggest zoonotic potential and, despite the apparent good health of all the evaluated birds, may represent a hypothetical potential threat to the avian population using the atoll. To our knowledge, this is the first description of: (1) the pandemic and public health relevant ST131-O25b harboring blaCTX-M-8 worldwide; (2) ST131-fimH22 in wild birds; and (3); fosA3 in wildlife. Our findings expand the current epidemiological knowledge regarding host and geographical distribution of ESBL-EC and ARGs in wild birds, and emphasize the disseminating characteristics and adaptability of ST131 and ST117 strains within the human-animal-interface. Herein we discuss the involvement of nonsynanthropic wild birds in the epidemiology of antimicrobial resistance and their potential as sentinels of ESBL E. coli in insular environments.


Assuntos
Escherichia coli , beta-Lactamases , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Animais , Antibacterianos , Brasil , Células Clonais , Humanos , Testes de Sensibilidade Microbiana , Tetra-Hidronaftalenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA