Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nature ; 549(7671): 227-232, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28854171

RESUMO

Human glioblastomas harbour a subpopulation of glioblastoma stem cells that drive tumorigenesis. However, the origin of intratumoural functional heterogeneity between glioblastoma cells remains poorly understood. Here we study the clonal evolution of barcoded glioblastoma cells in an unbiased way following serial xenotransplantation to define their individual fate behaviours. Independent of an evolving mutational signature, we show that the growth of glioblastoma clones in vivo is consistent with a remarkably neutral process involving a conserved proliferative hierarchy rooted in glioblastoma stem cells. In this model, slow-cycling stem-like cells give rise to a more rapidly cycling progenitor population with extensive self-maintenance capacity, which in turn generates non-proliferative cells. We also identify rare 'outlier' clones that deviate from these dynamics, and further show that chemotherapy facilitates the expansion of pre-existing drug-resistant glioblastoma stem cells. Finally, we show that functionally distinct glioblastoma stem cells can be separately targeted using epigenetic compounds, suggesting new avenues for glioblastoma-targeted therapy.


Assuntos
Diferenciação Celular , Linhagem da Célula , Rastreamento de Células , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células , Células Clonais/efeitos dos fármacos , Células Clonais/patologia , Epigênese Genética , Feminino , Glioblastoma/tratamento farmacológico , Xenoenxertos , Humanos , Camundongos , Invasividade Neoplásica , Transplante de Neoplasias , Células-Tronco Neoplásicas/efeitos dos fármacos , Fenótipo , Processos Estocásticos
2.
Blood ; 136(24): 2764-2773, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33301029

RESUMO

Hematopoietic clones with leukemogenic mutations arise in healthy people as they age, but progression to acute myeloid leukemia (AML) is rare. Recent evidence suggests that the microenvironment may play an important role in modulating human AML population dynamics. To investigate this concept further, we examined the combined and separate effects of an oncogene (c-MYC) and exposure to interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF), and stem cell factor (SCF) on the experimental genesis of a human AML in xenografted immunodeficient mice. Initial experiments showed that normal human CD34+ blood cells transduced with a lentiviral MYC vector and then transplanted into immunodeficient mice produced a hierarchically organized, rapidly fatal, and serially transplantable blast population, phenotypically and transcriptionally similar to human AML cells, but only in mice producing IL-3, GM-CSF, and SCF transgenically or in regular mice in which the cells were exposed to IL-3 or GM-CSF delivered using a cotransduction strategy. In their absence, the MYC+ human cells produced a normal repertoire of lymphoid and myeloid progeny in transplanted mice for many months, but, on transfer to secondary mice producing the human cytokines, the MYC+ cells rapidly generated AML. Indistinguishable diseases were also obtained efficiently from both primitive (CD34+CD38-) and late granulocyte-macrophage progenitor (GMP) cells. These findings underscore the critical role that these cytokines can play in activating a malignant state in normally differentiating human hematopoietic cells in which MYC expression has been deregulated. They also introduce a robust experimental model of human leukemogenesis to further elucidate key mechanisms involved and test strategies to suppress them.


Assuntos
Regulação Leucêmica da Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Interleucina-3/metabolismo , Leucemia Mieloide Aguda/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Transplante de Neoplasias
3.
Nature ; 528(7581): 267-71, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26633636

RESUMO

Most human breast cancers have diversified genomically and biologically by the time they become clinically evident. Early events involved in their genesis and the cellular context in which these events occur have thus been difficult to characterize. Here we present the first formal evidence of the shared and independent ability of basal cells and luminal progenitors, isolated from normal human mammary tissue and transduced with a single oncogene (KRAS(G12D)), to produce serially transplantable, polyclonal, invasive ductal carcinomas within 8 weeks of being introduced either subrenally or subcutaneously into immunodeficient mice. DNA barcoding of the initial cells revealed a dramatic change in the numbers and sizes of clones generated from them within 2 weeks, and the first appearance of many 'new' clones in tumours passaged into secondary recipients. Both primary and secondary tumours were phenotypically heterogeneous and primary tumours were categorized transcriptionally as 'normal-like'. This system challenges previous concepts that carcinogenesis in normal human epithelia is necessarily a slow process requiring the acquisition of multiple driver mutations. It also presents the first description of initial events that accompany the genesis and evolution of malignant human mammary cell populations, thereby contributing new understanding of the rapidity with which heterogeneity in their properties can develop.


Assuntos
Neoplasias da Mama/fisiopatologia , Carcinoma Ductal de Mama/fisiopatologia , Transformação Celular Neoplásica , Glândulas Mamárias Humanas/fisiopatologia , Animais , Neoplasias da Mama/genética , Carcinoma Ductal de Mama/genética , Linhagem da Célula/genética , Células Cultivadas , Código de Barras de DNA Taxonômico , Feminino , Perfilação da Expressão Gênica , Xenoenxertos , Humanos , Lentivirus/genética , Glândulas Mamárias Humanas/citologia , Camundongos , Camundongos Endogâmicos , Camundongos SCID , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas p21(ras) , Fatores de Tempo , Transdução Genética , Proteínas ras/genética
4.
Nature ; 518(7539): 317-30, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25693563

RESUMO

The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.


Assuntos
Epigênese Genética/genética , Epigenômica , Genoma Humano/genética , Sequência de Bases , Linhagem da Célula/genética , Células Cultivadas , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Cromossomos Humanos/química , Cromossomos Humanos/genética , Cromossomos Humanos/metabolismo , DNA/química , DNA/genética , DNA/metabolismo , Metilação de DNA , Conjuntos de Dados como Assunto , Elementos Facilitadores Genéticos/genética , Variação Genética/genética , Estudo de Associação Genômica Ampla , Histonas/metabolismo , Humanos , Especificidade de Órgãos/genética , RNA/genética , Valores de Referência
5.
Development ; 140(8): 1684-92, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23487312

RESUMO

The leukemia inhibitory factor (Lif) signaling pathway is a crucial determinant for mouse embryonic stem (mES) cell self-renewal and pluripotency. One of the hallmarks of mES cells, their compact growth morphology, results from tight cell adhesion mediated through E-cadherin, ß-catenin (Ctnnb1) and α-catenin with the actin cytoskeleton. ß-catenin is also involved in canonical Wnt signaling, which has also been suggested to control mES cell stemness. Here, we analyze Ctnnb1(-/-) mES cells in which cell adhesion is preserved by an E-cadherin-α-catenin (Eα) fusion protein (Ctnnb1(-/-)Eα mES cells), and show that mimicking only the adhesive function of ß-catenin is necessary and sufficient to maintain the mES cell state, making ß-catenin/Wnt signaling obsolete in this process. Furthermore, we propose a role for E-cadherin in promoting the Lif signaling cascade, showing an association of E-cadherin with the Lifr-Gp130 receptor complex, which is most likely facilitated by the extracellular domain of E-cadherin. Without Eα, and thus without maintained cell adhesion, Ctnnb1(-/-) mES cells downregulate components of the Lif signaling pathway, such as Lifr, Gp130 and activated Stat3, as well as pluripotency-associated markers. From these observations, we hypothesize that the changes in gene expression accompanying the loss of pluripotency are a direct consequence of dysfunctional cell adhesion. Supporting this view, we find that the requirement for intact adhesion can be circumvented by the forced expression of constitutively active Stat3. In summary, we put forward a model in which mES cells can be propagated in culture in the absence of Ctnnb1, as long as E-cadherin-mediated cell adhesion is preserved.


Assuntos
Caderinas/metabolismo , Adesão Celular/fisiologia , Células-Tronco Embrionárias/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Transdução de Sinais/fisiologia , beta Catenina/metabolismo , Animais , Western Blotting , Receptor gp130 de Citocina/metabolismo , Primers do DNA/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Imunoprecipitação , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/metabolismo , Luciferases , Camundongos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Recombinantes de Fusão/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , alfa Catenina/metabolismo , beta Catenina/genética
6.
Plant Cell ; 25(1): 149-66, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23371947

RESUMO

Histone (de)acetylation is a highly conserved chromatin modification that is vital for development and growth. In this study, we identified a role in seed dormancy for two members of the histone deacetylation complex in Arabidopsis thaliana, SIN3-LIKE1 (SNL1) and SNL2. The double mutant snl1 snl2 shows reduced dormancy and hypersensitivity to the histone deacetylase inhibitors trichostatin A and diallyl disulfide compared with the wild type. SNL1 interacts with HISTONE DEACETYLASE19 in vitro and in planta, and loss-of-function mutants of SNL1 and SNL2 show increased acetylation levels of histone 3 lysine 9/18 (H3K9/18) and H3K14. Moreover, SNL1 and SNL2 regulate key genes involved in the ethylene and abscisic acid (ABA) pathways by decreasing their histone acetylation levels. Taken together, we showed that SNL1 and SNL2 regulate seed dormancy by mediating the ABA-ethylene antagonism in Arabidopsis. SNL1 and SNL2 could represent a cross-link point of the ABA and ethylene pathways in the regulation of seed dormancy.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Dormência de Plantas/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Ácido Abscísico/análise , Ácido Abscísico/metabolismo , Acetilação , Compostos Alílicos/farmacologia , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/genética , Imunoprecipitação da Cromatina , Dissulfetos/farmacologia , Etilenos/análise , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação , Histona Desacetilases , Histonas/genética , Histonas/metabolismo , Ácidos Hidroxâmicos/farmacologia , Modelos Moleculares , Mutagênese Insercional , Fenótipo , Reguladores de Crescimento de Plantas/análise , Plantas Geneticamente Modificadas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Plântula/citologia , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/fisiologia , Sementes/citologia , Sementes/efeitos dos fármacos , Sementes/genética , Sementes/fisiologia , Análise de Sequência de RNA , Transcriptoma , Técnicas do Sistema de Duplo-Híbrido
8.
Plant J ; 80(3): 475-88, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25146719

RESUMO

Plant life is characterized by major phase changes. We studied the role of histone deacetylase (HDAC) activity in the transition from seed to seedling in Arabidopsis. Pharmacological inhibition of HDAC stimulated germination of freshly harvested seeds. Subsequent analysis revealed that histone deacetylase 9 (hda9) mutant alleles displayed reduced seed dormancy and faster germination than wild-type plants. Transcriptome meta-analysis comparisons between the hda9 dry seed transcriptome and published datasets demonstrated that transcripts of genes that are induced during imbibition in wild-type prematurely accumulated in hda9-1 dry seeds. This included several genes associated with photosynthesis and photoautotrophic growth such as RuBisCO and RuBisCO activase (RCA). Chromatin immunoprecipitation experiments demonstrated enhanced histone acetylation levels at their loci in young hda9-1 seedlings. Our observations suggest that HDA9 negatively influences germination and is involved in the suppression of seedling traits in dry seeds, probably by transcriptional repression via histone deacetylation. Accordingly, HDA9 transcript is abundant in dry seeds and becomes reduced during imbibition in wild-type seeds. The proposed function of HDA9 is opposite to that of its homologous genes HDA6 and HDA19, which have been reported to repress embryonic properties in germinated seedlings.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Regulação da Expressão Gênica de Plantas , Histona Desacetilases/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Transcriptoma , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Imunoprecipitação da Cromatina , Germinação , Histona Desacetilases/genética , Filogenia , Dormência de Plantas , Ribulose-Bifosfato Carboxilase/genética , Plântula/enzimologia , Plântula/genética , Plântula/fisiologia , Sementes/enzimologia , Sementes/genética , Sementes/fisiologia , Regulação para Cima
9.
Blood ; 122(18): 3129-37, 2013 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-24030380

RESUMO

Human cord blood (CB) offers an attractive source of cells for clinical transplants because of its rich content of cells with sustained repopulating ability in spite of an apparent deficiency of cells with rapid reconstituting ability. Nevertheless, the clonal dynamics of nonlimiting CB transplants remain poorly understood. To begin to address this question, we exposed CD34+ CB cells to a library of barcoded lentiviruses and used massively parallel sequencing to quantify the clonal distributions of lymphoid and myeloid cells subsequently detected in sequential marrow aspirates obtained from 2 primary NOD/SCID-IL2Rγ(-/-) mice, each transplanted with ∼10(5) of these cells, and for another 6 months in 2 secondary recipients. Of the 196 clones identified, 68 were detected at 4 weeks posttransplant and were often lympho-myeloid. The rest were detected later, after variable periods up to 13 months posttransplant, but with generally increasing stability throughout time, and they included clones in which different lineages were detected. However, definitive evidence of individual cells capable of generating T-, B-, and myeloid cells, for over a year, and self-renewal of this potential was also obtained. These findings highlight the caveats and utility of this model to analyze human hematopoietic stem cell control in vivo.


Assuntos
Diferenciação Celular , Proliferação de Células , Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Sangue Fetal/citologia , Animais , Antígenos CD34/metabolismo , Sequência de Bases , Linhagem da Célula , Células Clonais/classificação , Células Clonais/citologia , Células Clonais/metabolismo , Código de Barras de DNA Taxonômico , Sangue Fetal/metabolismo , Citometria de Fluxo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Imunofenotipagem , Subunidade gama Comum de Receptores de Interleucina/deficiência , Subunidade gama Comum de Receptores de Interleucina/genética , Cinética , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Dados de Sequência Molecular , Oligonucleotídeos/genética , Fatores de Tempo , Transplante Heterólogo
10.
bioRxiv ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38798672

RESUMO

Synovial sarcoma (SyS) is an aggressive soft-tissue malignancy characterized by a pathognomonic chromosomal translocation leading to the formation of the SS18::SSX fusion oncoprotein. SS18::SSX associates with mammalian BAF complexes suggesting deregulation of chromatin architecture as the oncogenic driver in this tumour type. To examine the epigenomic state of SyS we performed comprehensive multi-omics analysis on 52 primary pre-treatment human SyS tumours. Our analysis revealed a continuum of epigenomic states across the cohort at fusion target genes independent of rare somatic genetic lesions. We identify cell-of-origin signatures defined by enhancer states and reveal unexpected relationships between H2AK119Ub1 and active marks. The number of bivalent promoters, dually marked by the repressive H3K27me3 and activating H3K4me3 marks, has strong prognostic value and outperforms tumor grade in predicting patient outcome. Finally, we identify SyS defining epigenomic features including H3K4me3 expansion associated with striking promoter DNA hypomethylation in which SyS displays the lowest mean methylation level of any sarcoma subtype. We explore these distinctive features as potential vulnerabilities in SyS and identify H3K4me3 inhibition as a promising therapeutic strategy.

11.
iScience ; 26(6): 106795, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37213235

RESUMO

Runt-related transcription factor 1 (RUNX1) is oncogenic in diverse types of leukemia and epithelial cancers where its expression is associated with poor prognosis. Current models suggest that RUNX1 cooperates with other oncogenic factors (e.g., NOTCH1, TAL1) to drive the expression of proto-oncogenes in T cell acute lymphoblastic leukemia (T-ALL) but the molecular mechanisms controlled by RUNX1 and its cooperation with other factors remain unclear. Integrative chromatin and transcriptional analysis following inhibition of RUNX1 and NOTCH1 revealed a surprisingly widespread role of RUNX1 in the establishment of global H3K27ac levels and that RUNX1 is required by NOTCH1 for cooperative transcription activation of key NOTCH1 target genes including MYC, DTX1, HES4, IL7R, and NOTCH3. Super-enhancers were preferentially sensitive to RUNX1 knockdown and RUNX1-dependent super-enhancers were disrupted following the treatment of a pan-BET inhibitor, I-BET151.

12.
Leukemia ; 36(3): 809-820, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34588613

RESUMO

TET2 loss-of-function mutations are recurrent events in a wide range of hematological malignancies and a physiologic occurrence in blood cells of healthy older adults. It is currently unknown what determines if a person harboring a somatic TET2 mutation will progress to myelodysplastic syndrome or acute myeloid leukemia. Here we develop a zebrafish tet2 mutant through which we show that tet2 loss leads to restricted hematopoietic differentiation combined with a modest upregulation of p53, which is also characteristic of many inherited bone marrow failure syndromes. Uniquely in the context of emergency hematopoiesis by external stimuli, such as infection or cytokine stimulation, lack of tet2 leads hematopoietic stem cells to undergo excessive proliferation, resulting in an accumulation of immature cells, which are poised to become leukemogenic following additional genetic/epigenetic perturbations. This same phenomenon observed in zebrafish extends to human hematopoietic stem cells, identifying TET2 as a critical relay switch in the context of stress hematopoiesis.


Assuntos
Dioxigenases/genética , Neoplasias Hematológicas/genética , Hematopoese , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Proliferação de Células , Modelos Animais de Doenças , Deleção de Genes , Inativação Gênica , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Mutação com Perda de Função , Síndromes Mielodisplásicas/genética
13.
Cancer Res ; 80(17): 3480-3491, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32641414

RESUMO

The somatic missense point mutation c.402C>G (p.C134W) in the FOXL2 transcription factor is pathognomonic for adult-type granulosa cell tumors (AGCT) and a diagnostic marker for this tumor type. However, the molecular consequences of this mutation and its contribution to the mechanisms of AGCT pathogenesis remain unclear. To explore these mechanisms, we engineered V5-FOXL2WT- and V5-FOXL2C134W-inducible isogenic cell lines and performed chromatin immunoprecipitation sequencing and transcriptome profiling. FOXL2C134W associated with the majority of the FOXL2 wild-type DNA elements as well as a large collection of unique elements genome wide. This model enabled confirmation of altered DNA-binding specificity for FOXL2C134W and identification of unique targets of FOXL2C134W including SLC35F2, whose expression increased sensitivity to YM155. Our results suggest FOXL2C134W drives AGCT by altering the binding affinity of FOXL2-containing complexes to engage an oncogenic transcriptional program. SIGNIFICANCE: A mechanistic understanding of FOXL2C134W-induced regulatory state alterations drives discovery of a rationally designed therapeutic strategy.


Assuntos
DNA/metabolismo , Proteína Forkhead Box L2/genética , Proteína Forkhead Box L2/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Tumor de Células da Granulosa/genética , Linhagem Celular Tumoral , Feminino , Tumor de Células da Granulosa/metabolismo , Humanos , Mutação de Sentido Incorreto , Mutação Puntual , Ligação Proteica
14.
Epigenomics ; 12(12): 1053-1070, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32677466

RESUMO

Aim: To provide a comprehensive understanding of gene regulatory networks in the developing human brain and a foundation for interpreting pathogenic deregulation. Materials & methods: We generated reference epigenomes and transcriptomes of dissected brain regions and primary neural progenitor cells (NPCs) derived from cortical and ganglionic eminence tissues of four normal human fetuses. Results: Integration of these data across developmental stages revealed a directional increase in active regulatory states, transcription factor activities and gene transcription with developmental stage. Consistent with differences in their biology, NPCs derived from cortical and ganglionic eminence regions contained common, region specific, and gestational week specific regulatory states. Conclusion: We provide a high-resolution regulatory network for NPCs from different brain regions as a comprehensive reference for future studies.


Assuntos
Encéfalo/embriologia , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Epigenoma , Feminino , Feto , Humanos , Células-Tronco Neurais , Gravidez , Transcriptoma , Gêmeos
15.
Epigenetics Chromatin ; 12(1): 63, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601272

RESUMO

BACKGROUND: MeCP2-a chromatin-binding protein associated with Rett syndrome-has two main isoforms, MeCP2-E1 and MeCP2-E2, differing in a few N-terminal amino acid residues. Previous studies have shown brain region-specific expression of these isoforms which, in addition to their different cellular localization and differential expression during brain development, suggest that they may also have non-overlapping molecular mechanisms. However, differential functions of MeCP2-E1 and E2 remain largely unexplored. RESULTS: Here, we show that the N-terminal domains (NTD) of MeCP2-E1 and E2 modulate the ability of the methyl-binding domain (MBD) to interact with DNA as well as influencing the turn-over rates, binding dynamics, response to neuronal depolarization, and circadian oscillations of the two isoforms. Our proteomics data indicate that both isoforms exhibit unique interacting protein partners. Moreover, genome-wide analysis using ChIP-seq provide evidence for a shared as well as a specific regulation of different sets of genes. CONCLUSIONS: Our study supports the idea that Rett syndrome might arise from simultaneous impairment of cellular processes involving non-overlapping functions of MECP2 isoforms. For instance, MeCP2-E1 mutations might impact stimuli-dependent chromatin regulation, while MeCP2-E2 mutations could result in aberrant ribosomal expression. Overall, our findings provide insight into the functional complexity of MeCP2 by dissecting differential aspects of its two isoforms.


Assuntos
DNA/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Animais , Linhagem Celular Tumoral , Cromatina/metabolismo , Ritmo Circadiano/genética , Humanos , Proteína 2 de Ligação a Metil-CpG/química , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Ligação Proteica , Domínios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley , Síndrome de Rett/genética , Síndrome de Rett/patologia
16.
Cell Stem Cell ; 23(5): 714-726.e7, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30269902

RESUMO

Acute leukemias are aggressive malignancies of developmentally arrested hematopoietic progenitors. We sought here to explore the possibility that changes in hematopoietic stem/progenitor cells during development might alter the biology of leukemias arising from this tissue compartment. Using a mouse model of acute T cell leukemia, we found that leukemias generated from fetal liver (FL) and adult bone marrow (BM) differed dramatically in their leukemia stem cell activity with FL leukemias showing markedly reduced serial transplantability as compared to BM leukemias. We present evidence that this difference is due to NOTCH1-driven autocrine IGF1 signaling, which is active in FL cells but restrained in BM cells by EZH2-dependent H3K27 trimethylation. Further, we confirmed this mechanism is operative in human disease and show that enforced IGF1 signaling effectively limits leukemia stem cell activity. These findings demonstrate that resurrecting dormant fetal programs in adult cells may represent an alternate therapeutic approach in human cancer.


Assuntos
Células da Medula Óssea/metabolismo , Epigênese Genética/genética , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Células-Tronco Neoplásicas/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Transdução de Sinais/genética , Animais , Células da Medula Óssea/patologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Células-Tronco Neoplásicas/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia
17.
BMC Genomics ; 8: 84, 2007 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-17394638

RESUMO

BACKGROUND: Currently, two main technologies are used for screening of DNA copy number; the BAC (Bacterial Artificial Chromosome) and the recently developed oligonucleotide-based CGH (Chromosomal Comparative Genomic Hybridization) arrays which are capable of detecting small genomic regions with amplification or deletion. The correlation as well as the discriminative power of these platforms has never been compared statistically on a significant set of human patient samples. RESULTS: In this paper, we present an exhaustive comparison between the two CGH platforms, undertaken at two independent sites using the same batch of DNA from 19 advanced prostate cancers. The comparison was performed directly on the raw data and a significant correlation was found between the two platforms. The correlation was greatly improved when the data were averaged over large chromosomic regions using a segmentation algorithm. In addition, this analysis has enabled the development of a statistical model to discriminate BAC outliers that might indicate microevents. These microevents were validated by the oligo platform results. CONCLUSION: This article presents a genome-wide statistical validation of the oligo array platform on a large set of patient samples and demonstrates statistically its superiority over the BAC platform for the Identification of chromosomic events. Taking advantage of a large set of human samples treated by the two technologies, a statistical model has been developed to show that the BAC platform could also detect microevents.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Dosagem de Genes/genética , Hibridização de Ácido Nucleico/métodos , Neoplasias da Próstata/genética , Humanos , Masculino , Modelos Estatísticos , Oligonucleotídeos/genética
18.
Exp Hematol ; 53: 48-58, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28602946

RESUMO

We report here the first use of whole-genome sequencing (WGS) to examine the initial clonal dynamics in an unusual patient with chronic myeloid leukemia (CML), who presented in chronic phase (CP) with doubly marked BCR-ABL1+/JAK2V617F-mutant cells and, over a 9-year period, progressed into an accelerated phase (AP) and then terminal blast phase (BP). WGS revealed that the diagnostic cells also contained mutations in ASXL1, SEC23B, MAD1L1, and RREB1 as well as 12,000 additional uncommon DNA variants. WGS of endothelial cells generated from circulating precursors revealed many of these were shared with the CML clone. Surprisingly, WGS of induced pluripotent stem cells (iPSCs) derived from the AP cells revealed only six additional coding somatic mutations, despite retention by the hematopoietic progeny of the parental AP cell levels of BCR-ABL1 expression and sensitivity to imatinib and pimozide. Limited analysis of BP cells revealed independent subclonal progression to homozygosity of the MAD1L1 and RREB1 variants. MAD1L1 and SEC23B mutations were also identified in 2 of 101 cases of myeloproliferative neoplasms, but not in 42 healthy subjects. These findings challenge historic concepts of clonal evolution in CML.


Assuntos
Janus Quinase 2/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Mutação , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Estudo de Associação Genômica Ampla , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Masculino , Pessoa de Meia-Idade , Proteínas Nucleares/genética , Fatores de Transcrição/genética
19.
J Endocrinol ; 235(2): 153-165, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28808080

RESUMO

The thyroid gland, necessary for normal human growth and development, functions as an essential regulator of metabolism by the production and secretion of appropriate levels of thyroid hormone. However, assessment of abnormal thyroid function may be challenging suggesting a more fundamental understanding of normal function is needed. One way to characterize normal gland function is to study the epigenome and resulting transcriptome within its constituent cells. This study generates the first published reference epigenomes for human thyroid from four individuals using ChIP-seq and RNA-seq. We profiled six histone modifications (H3K4me1, H3K4me3, H3K27ac, H3K36me3, H3K9me3, H3K27me3), identified chromatin states using a hidden Markov model, produced a novel quantitative metric for model selection and established epigenomic maps of 19 chromatin states. We found that epigenetic features characterizing promoters and transcription elongation tend to be more consistent than regions characterizing enhancers or Polycomb-repressed regions and that epigenetically active genes consistent across all epigenomes tend to have higher expression than those not marked as epigenetically active in all epigenomes. We also identified a set of 18 genes epigenetically active and consistently expressed in the thyroid that are likely highly relevant to thyroid function. Altogether, these epigenomes represent a powerful resource to develop a deeper understanding of the underlying molecular biology of thyroid function and provide contextual information of thyroid and human epigenomic data for comparison and integration into future studies.


Assuntos
Epigênese Genética/fisiologia , Epigenômica/métodos , Regulação da Expressão Gênica/fisiologia , Glândula Tireoide/fisiologia , Cromatina , Histonas/genética , Histonas/metabolismo , Humanos , Regiões Promotoras Genéticas , Transcriptoma
20.
Nucleic Acids Res ; 31(13): 3829-32, 2003 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12824430

RESUMO

PipeAlign is a protein family analysis tool integrating a five step process ranging from the search for sequence homologues in protein and 3D structure databases to the definition of the hierarchical relationships within and between subfamilies. The complete, automatic pipeline takes a single sequence or a set of sequences as input and constructs a high-quality, validated MACS (multiple alignment of complete sequences) in which sequences are clustered into potential functional subgroups. For the more experienced user, the PipeAlign server also provides numerous options to run only a part of the analysis, with the possibility to modify the default parameters of each software module. For example, the user can choose to enter an existing multiple sequence alignment for refinement, validation and subsequent clustering of the sequences. The aim is to provide an interactive workbench for the validation, integration and presentation of a protein family, not only at the sequence level, but also at the structural and functional levels. PipeAlign is available at http://igbmc.u-strasbg.fr/PipeAlign/.


Assuntos
Proteínas/classificação , Análise de Sequência de Proteína/métodos , Software , Internet , Proteínas/química , Controle de Qualidade , Alinhamento de Sequência , Software/normas , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA