Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Chem Phys ; 160(14)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38591677

RESUMO

Coarse-grained models have emerged as valuable tools to simulate long DNA molecules while maintaining computational efficiency. These models aim at preserving interactions among coarse-grained variables in a manner that mirrors the underlying atomistic description. We explore here a method for testing coarse-grained vs all-atom models using stiffness matrices in Fourier space (q-stiffnesses), which are particularly suited to probe DNA elasticity at different length scales. We focus on a class of coarse-grained rigid base DNA models known as cgDNA and its most recent version, cgDNA+. Our analysis shows that while cgDNA+ closely follows the q-stiffnesses of the all-atom model, the original cgDNA shows some deviations for twist and bending variables, which are rather strong in the q → 0 (long length scale) limit. The consequence is that while both cgDNA and cgDNA+ give a suitable description of local elastic behavior, the former misses some effects that manifest themselves at longer length scales. In particular, cgDNA performs poorly on twist stiffness, with a value much lower than expected for long DNA molecules. Conversely, the all-atom and cgDNA+ twist are strongly length scale dependent: DNA is torsionally soft at a few base pair distances but becomes more rigid at distances of a few dozen base pairs. Our analysis shows that the bending persistence length in all-atom and cgDNA+ is somewhat overestimated.


Assuntos
DNA , Elasticidade , Pareamento de Bases
2.
Nucleic Acids Res ; 50(9): 4974-4987, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35474142

RESUMO

Structural Maintenance of Chromosomes (SMC) complexes play essential roles in genome organization across all domains of life. To determine how the activities of these large (≈50 nm) complexes are controlled by ATP binding and hydrolysis, we developed a molecular dynamics model that accounts for conformational motions of the SMC and DNA. The model combines DNA loop capture with an ATP-induced 'power stroke' to translocate the SMC complex along DNA. This process is sensitive to DNA tension: at low tension (0.1 pN), the model makes loop-capture steps of average 60 nm and up to 200 nm along DNA (larger than the complex itself), while at higher tension, a distinct inchworm-like translocation mode appears. By tethering DNA to an experimentally-observed additional binding site ('safety belt'), the model SMC complex can perform loop extrusion (LE). The dependence of LE on DNA tension is distinct for fixed DNA tension vs. fixed DNA end points: LE reversal occurs above 0.5 pN for fixed tension, while LE stalling without reversal occurs at about 2 pN for fixed end points. Our model matches recent experimental results for condensin and cohesin, and makes testable predictions for how specific structural variations affect SMC function.


Assuntos
Cromossomos , Simulação de Dinâmica Molecular , Trifosfato de Adenosina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromossomos/metabolismo , DNA/química , Humanos , Conformação Molecular , Translocação Genética
3.
Phys Rev Lett ; 131(23): 238402, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38134780

RESUMO

Proteins often regulate their activities via allostery-or action at a distance-in which the binding of a ligand at one binding site influences the affinity for another ligand at a distal site. Although less studied than in proteins, allosteric effects have been observed in experiments with DNA as well. In these experiments two or more proteins bind at distinct DNA sites and interact indirectly with each other, via a mechanism mediated by the linker DNA molecule. We develop a mechanical model of DNA/protein interactions which predicts three distinct mechanisms of allostery. Two of these involve an enthalpy-mediated allostery, while a third mechanism is entropy driven. We analyze experiments of DNA allostery and highlight the distinctive signatures allowing one to identify which of the proposed mechanisms best fits the data.


Assuntos
DNA , Proteínas , Ligantes , Regulação Alostérica , Sítios de Ligação/genética
4.
J Chem Phys ; 156(23): 234105, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35732531

RESUMO

Mechanical properties of nucleic acids play an important role in many biological processes that often involve physical deformations of these molecules. At sufficiently long length scales (say, above ∼20-30 base pairs), the mechanics of DNA and RNA double helices is described by a homogeneous Twistable Wormlike Chain (TWLC), a semiflexible polymer model characterized by twist and bending stiffnesses. At shorter scales, this model breaks down for two reasons: the elastic properties become sequence-dependent and the mechanical deformations at distal sites get coupled. We discuss in this paper the origin of the latter effect using the framework of a non-local Twistable Wormlike Chain (nlTWLC). We show, by comparing all-atom simulations data for DNA and RNA double helices, that the non-local couplings are of very similar nature in these two molecules: couplings between distal sites are strong for tilt and twist degrees of freedom and weak for roll. We introduce and analyze a simple double-stranded polymer model that clarifies the origin of this universal distal couplings behavior. In this model, referred to as the ladder model, a nlTWLC description emerges from the coarsening of local (atomic) degrees of freedom into angular variables that describe the twist and bending of the molecule. Different from its local counterpart, the nlTWLC is characterized by a length-scale-dependent elasticity. Our analysis predicts that nucleic acids are mechanically softer at the scale of a few base pairs and are asymptotically stiffer at longer length scales, a behavior that matches experimental data.


Assuntos
Ácidos Nucleicos , DNA , Elasticidade , Modelos Moleculares , Conformação de Ácido Nucleico , Polímeros , RNA
5.
Nano Lett ; 21(1): 762-768, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33342212

RESUMO

We present a synthetic nanoscale piston that uses chemical energy to perform molecular transport against an applied bias. Such a device comprises a 13 by 5 nm protein cylinder, embedded in a biological membrane enclosing a single-stranded DNA (ssDNA) rod. Hybridization with DNA cargo rigidifies the rod, allowing for transport of a selected DNA molecule across the nanopore. A strand displacement reaction from ssDNA fuel on the other side of the membrane then liberates the DNA cargo back into solution and regenerates the initial configuration. The entropic penalty of ssDNA confinement inside the nanopore drives DNA transport regardless of the applied bias. Multiple automated and reciprocating cycles are observed, in which the DNA piston moves through the 10 nm length of the nanopore. In every cycle, a single DNA molecule is transported across the nanopore against an external bias force, which is the hallmark of biological transporters.


Assuntos
Nanoporos , Transporte Biológico Ativo , DNA/genética , DNA de Cadeia Simples , Nanotecnologia
6.
Angew Chem Int Ed Engl ; 61(34): e202206227, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35759385

RESUMO

The real-time identification of protein biomarkers is crucial for the development of point-of-care and portable devices. Here, we use a PlyAB biological nanopore to detect haemoglobin (Hb) variants. Adult haemoglobin (HbA) and sickle cell anaemia haemoglobin (HbS), which differ by just one amino acid, were distinguished in a mixture with more than 97 % accuracy based on individual blockades. Foetal Hb, which shows a larger sequence variation, was distinguished with near 100 % accuracy. Continuum and Brownian dynamics simulations revealed that Hb occupies two energy minima, one near the inner constriction and one at the trans entry of the nanopore. Thermal fluctuations, the charge of the protein, and the external bias influence the dynamics of Hb within the nanopore, which in turn generates the unique ionic current signal in the Hb variants. Finally, Hb was counted from blood samples, demonstrating that direct discrimination and quantification of Hb from blood using nanopores, is feasible.


Assuntos
Nanoporos , Aminoácidos/química , Hemoglobinas , Transporte de Íons , Simulação de Dinâmica Molecular
7.
Phys Chem Chem Phys ; 22(6): 3512-3519, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-31993608

RESUMO

Biomolecular conformational transitions are usually modeled as barrier crossings in a free energy landscape. The transition paths connect two local free energy minima and transition path times (TPT) are the actual durations of the crossing events. The simplest model employed to analyze TPT and to fit empirical data is that of a stochastic particle crossing a parabolic barrier. Motivated by some disagreement between the value of the barrier height obtained from the TPT distributions as compared to the value obtained from kinetic and thermodynamic analyses, we investigate here TPT for barriers which deviate from the symmetric parabolic shape. We introduce a continuous set of potentials, that starting from a parabolic shape, can be made increasingly asymmetric by tuning a single parameter. The TPT distributions obtained in the asymmetric case are very well-fitted by distributions generated by parabolic barriers. The fits, however, provide values for the barrier heights and diffusion coefficients which deviate from the original input values. We show how these findings can be understood from the analysis of the eigenvalues spectrum of the Fokker-Planck equation and highlight connections with experimental results.

8.
Langmuir ; 35(37): 12276-12283, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31433651

RESUMO

DNA surface-hybridization biosensors utilize the selective hybridization of target sequences in solution to surface-immobilized probes. In this process, the target is usually assumed to be in excess, so that its concentration does not significantly vary while hybridizing to the surface-bound probes. If the target is initially at low concentrations and/or if the number of probes is very large, and they have high affinity for the target, the DNA in solution may become depleted. In this paper we analyze the equilibrium and kinetics of hybridization of DNA biosensors in the case of strong target depletion, by extending the Langmuir adsorption model. We focus, in particular, on the detection of a small amount of a single-nucleotide "mutant" sequence (concentration c2) in a solution, which differs by one or more nucleotides from an abundant "wild-type" sequence (concentration c1 ≫ c2). We show that depletion can give rise to a strongly enhanced sensitivity of the biosensors. Using representative values of rate constants and hybridization free energies, we find that in the depletion regime one could detect relative concentrations c2/c1 that are up to 3 orders of magnitude smaller than in the conventional approach. The kinetics is surprisingly rich and exhibits a nonmonotonic adsorption with no counterpart in the no-depletion case. Finally, we show that, alongside enhanced detection sensitivity, this approach offers the possibility of sample enrichment, by substantially increasing the relative amount of the mutant over the wild-type sequence.


Assuntos
Técnicas Biossensoriais/métodos , DNA/química , Adsorção , Cinética , Hibridização de Ácido Nucleico , Propriedades de Superfície
9.
J Chem Phys ; 150(13): 135101, 2019 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-30954045

RESUMO

By combining analytical results and simulations of various coarse-grained models, we investigate the minimal energy shape of DNA minicircles which are torsionally constrained by an imposed over or undertwist. We show that twist-bend coupling, a cross interaction term discussed in the recent DNA literature, induces minimal energy shapes with a periodic alternation of parts with high and low curvature resembling rounded polygons. We briefly discuss the possible experimental relevance of these findings. We finally show that the twist and bending energies of minicircles are governed by renormalized stiffness constants, rather than the bare ones. This has important consequences for the analysis of experiments involving circular DNA meant to determine DNA elastic constants.


Assuntos
DNA/química , Fenômenos Mecânicos , Conformação de Ácido Nucleico , Fenômenos Biomecânicos , Elasticidade , Simulação de Dinâmica Molecular
10.
Phys Rev Lett ; 121(8): 088101, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30192578

RESUMO

Recent work indicates that twist-bend coupling plays an important role in DNA micromechanics. Here we investigate its effect on bent DNA. We provide an analytical solution of the minimum-energy shape of circular DNA, showing that twist-bend coupling induces sinusoidal twist waves. This solution is in excellent agreement with both coarse-grained simulations of minicircles and nucleosomal DNA data, which is bent and wrapped around histone proteins in a superhelical conformation. Our analysis shows that the observed twist oscillation in nucleosomal DNA, so far attributed to the interaction with the histone proteins, is an intrinsic feature of free bent DNA, and should be observable in other protein-DNA complexes.


Assuntos
DNA/química , Modelos Químicos , Nucleossomos/química , Simulação por Computador , DNA/metabolismo , DNA Circular/química , DNA Circular/metabolismo , Elasticidade , Modelos Moleculares , Conformação de Ácido Nucleico , Nucleossomos/metabolismo , Termodinâmica
11.
Phys Chem Chem Phys ; 20(40): 25676-25682, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30211419

RESUMO

We derive an analytical expression for the transition path time (TPT) distribution for a one-dimensional particle crossing a parabolic barrier. The solution is expressed in terms of the eigenfunctions and eigenvalues of the associated Fokker-Planck equation. The particle exhibits anomalous dynamics generated by a power-law memory kernel, which includes memoryless Markovian dynamics as a limiting case. Our result takes into account absorbing boundary conditions, extending existing results obtained for free boundaries. We show that TPT distributions obtained from numerical simulations are in excellent agreement with analytical results, while the typically employed free boundary conditions lead to a systematic overestimation of the barrier height. These findings may be useful in the analysis of experimental results on the transition path time. A web tool to perform this analysis is freely available.

12.
Phys Rev Lett ; 118(21): 217801, 2017 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-28598642

RESUMO

Recent magnetic tweezers experiments have reported systematic deviations of the twist response of double-stranded DNA from the predictions of the twistable wormlike chain model. Here we show, by means of analytical results and computer simulations, that these discrepancies can be resolved if a coupling between twist and bend is introduced. We obtain an estimate of 40±10 nm for the twist-bend coupling constant. Our simulations are in good agreement with high-resolution, magnetic-tweezers torque data. Although the existence of twist-bend coupling was predicted long ago [J. Marko and E. Siggia, Macromolecules 27, 981 (1994)MAMOBX0024-929710.1021/ma00082a015], its effects on the mechanical properties of DNA have been so far largely unexplored. We expect that this coupling plays an important role in several aspects of DNA statics and dynamics.


Assuntos
Simulação por Computador , DNA/química , Fenômenos Biomecânicos , Magnetismo , Modelos Moleculares , Conformação de Ácido Nucleico , Torque
13.
J Chem Phys ; 146(21): 214902, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28595422

RESUMO

It is well established that many physical properties of DNA at sufficiently long length scales can be understood by means of simple polymer models. One of the most widely used elasticity models for DNA is the twistable worm-like chain (TWLC), which describes the double helix as a continuous elastic rod with bending and torsional stiffness. An extension of the TWLC, which has recently received some attention, is the model by Marko and Siggia, who introduced an additional twist-bend coupling, expected to arise from the groove asymmetry. By performing computer simulations of two available versions of oxDNA, a coarse-grained model of nucleic acids, we investigate the microscopic origin of twist-bend coupling. We show that this interaction is negligible in the oxDNA version with symmetric grooves, while it appears in the oxDNA version with asymmetric grooves. Our analysis is based on the calculation of the covariance matrix of equilibrium deformations, from which the stiffness parameters are obtained. The estimated twist-bend coupling coefficient from oxDNA simulations is G=30±1 nm. The groove asymmetry induces a novel twist length scale and an associated renormalized twist stiffness κt≈80 nm, which is different from the intrinsic torsional stiffness C≈110 nm. This naturally explains the large variations on experimental estimates of the intrinsic stiffness performed in the past.


Assuntos
DNA/química , Simulação de Dinâmica Molecular , Elasticidade
15.
Nucleic Acids Res ; 41(18): e173, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23935070

RESUMO

Within a single infected individual, a virus population can have a high genomic variability. In the case of HIV, several mutations can be present even in a small genomic window of 20-30 nucleotides. For diagnostics purposes, it is often needed to resequence genomic subsets where crucial mutations are known to occur. In this article, we address this issue using DNA microarrays and inputs from hybridization thermodynamics. Hybridization signals from multiple probes are analysed, including strong signals from perfectly matching (PM) probes and a large amount of weaker cross-hybridization signals from mismatching (MM) probes. The latter are crucial in the data analysis. Seven coded clinical samples (HIV-1) are analyzed, and the microarray results are in full concordance with Sanger sequencing data. Moreover, the thermodynamic analysis of microarray signals resolves inherent ambiguities in Sanger data of mixed samples and provides additional clinically relevant information. These results show the reliability and added value of DNA microarrays for point-of-care diagnostic purposes.


Assuntos
Análise Mutacional de DNA/métodos , HIV-1/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Algoritmos , Transcriptase Reversa do HIV/genética , Mutação , Termodinâmica
16.
Nucleic Acids Res ; 41(5): 2779-96, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23307556

RESUMO

Hybridization of nucleic acids on solid surfaces is a key process involved in high-throughput technologies such as microarrays and, in some cases, next-generation sequencing (NGS). A physical understanding of the hybridization process helps to determine the accuracy of these technologies. The goal of a widespread research program is to develop reliable transformations between the raw signals reported by the technologies and individual molecular concentrations from an ensemble of nucleic acids. This research has inputs from many areas, from bioinformatics and biostatistics, to theoretical and experimental biochemistry and biophysics, to computer simulations. A group of leading researchers met in Ploen Germany in 2011 to discuss present knowledge and limitations of our physico-chemical understanding of high-throughput nucleic acid technologies. This meeting inspired us to write this summary, which provides an overview of the state-of-the-art approaches based on physico-chemical foundation to modeling of the nucleic acids hybridization process on solid surfaces. In addition, practical application of current knowledge is emphasized.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência com Séries de Oligonucleotídeos , Algoritmos , Artefatos , Pareamento de Bases , Calibragem , DNA/química , DNA/genética , Sondas de DNA/química , Sondas de DNA/genética , Humanos , Processamento de Imagem Assistida por Computador , Modelos Biológicos , Hibridização de Ácido Nucleico/métodos , Propriedades de Superfície , Termodinâmica
17.
Phys Rev E ; 109(2-1): 024408, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38491617

RESUMO

Recent advances in experimental fluorescence microscopy allow high accuracy determination (resolution of 50 nm) of the three-dimensional physical location of multiple (up to ∼10^{2}) tagged regions of the chromosome. We investigate publicly available microscopy data for two loci of the human Chr21 obtained from multiplexed fluorescence in situ hybridization (FISH) methods for different cell lines and treatments. Inspired by polymer physics models, our analysis centers around distance distributions between different tags with the aim being to unravel the chromatin conformational arrangements. We show that for any specific genomic site, there are (at least) two different conformational arrangements of chromatin, implying coexisting distinct topologies which we refer to as phase α and phase ß. These two phases show different scaling behaviors: the former is consistent with a crumpled globule, while the latter indicates a confined, but more extended conformation, such as a looped domain. The identification of these distinct phases sheds light on the coexistence of multiple chromatin topologies and provides insights into the effects of cellular context and/or treatments on chromatin structure.


Assuntos
Cromatina , Cromossomos , Humanos , Hibridização in Situ Fluorescente/métodos , Genoma , Microscopia de Fluorescência/métodos
18.
J Chem Theory Comput ; 19(3): 902-909, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36695645

RESUMO

All-atom simulations have become increasingly popular to study conformational and dynamical properties of nucleic acids as they are accurate and provide high spatial and time resolutions. This high resolution, however, comes at a heavy computational cost, and, within the time scales of simulations, nucleic acids weakly fluctuate around their ideal structure exploring a limited set of conformations. We introduce the RBB-NA algorithm (available as a package in the Open Source Library PLUMED), which is capable of controlling rigid base parameters in all-atom simulations of nucleic acids. With suitable biasing potentials, this algorithm can "force" a DNA or RNA molecule to assume specific values of the six rotational (tilt, roll, twist, buckle, propeller, opening) and/or the six translational parameters (shift, slide, rise, shear, stretch, stagger). The algorithm enables the use of advanced sampling techniques to probe the structure and dynamics of locally strongly deformed nucleic acids. We illustrate its performance showing some examples in which DNA is strongly twisted, bent, or locally buckled. In these examples, RBB-NA reproduces well the unconstrained simulations data and other known features of DNA mechanics, but it also allows one to explore the anharmonic behavior characterizing the mechanics of nucleic acids in the high deformation regime.


Assuntos
Simulação de Dinâmica Molecular , Ácidos Nucleicos , Conformação de Ácido Nucleico , Ácidos Nucleicos/química , DNA/química , Viés
19.
Phys Rev E ; 106(2-1): 024412, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36109921

RESUMO

Plectonemes are intertwined helically looped domains which form when a DNA molecule is supercoiled, i.e., over- or underwound. They are ubiquitous in cellular DNA, and their physical properties have attracted significant interest both from the experimental side and from the modeling side. In this paper, we investigate fluctuations of the end-point distance z of supercoiled linear DNA molecules subject to external stretching forces. Our analysis is based on a two-phase model, which describes the supercoiled DNA as composed of a stretched phase and a plectonemic phase. A variety of mechanisms are found to contribute to extension fluctuations, characterized by the variance 〈Δz^{2}〉. We find the dominant contribution to 〈Δz^{2}〉 to originate from phase-exchange fluctuations, the transient shrinking and expansion of plectonemes, which is accompanied by an exchange of molecular length between the two phases. We perform Monte Carlo simulations of the twistable wormlike chain and analyze the fluctuation of various quantities, the results of which are found to agree with the two-phase model predictions. Furthermore, we show that the extension and its variance at high forces are very well captured by the two-phase model, provided that one goes beyond quadratic approximations.


Assuntos
DNA Super-Helicoidal , DNA , Método de Monte Carlo , Conformação de Ácido Nucleico
20.
PNAS Nexus ; 1(5): pgac268, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36712371

RESUMO

DNA supercoiling is a key regulatory mechanism that orchestrates DNA readout, recombination, and genome maintenance. DNA-binding proteins often mediate these processes by bringing two distant DNA sites together, thereby inducing (transient) topological domains. In order to understand the dynamics and molecular architecture of protein-induced topological domains in DNA, quantitative and time-resolved approaches are required. Here, we present a methodology to determine the size and dynamics of topological domains in supercoiled DNA in real time and at the single-molecule level. Our approach is based on quantifying the extension fluctuations-in addition to the mean extension-of supercoiled DNA in magnetic tweezers (MT). Using a combination of high-speed MT experiments, Monte Carlo simulations, and analytical theory, we map out the dependence of DNA extension fluctuations as a function of supercoiling density and external force. We find that in the plectonemic regime, the extension variance increases linearly with increasing supercoiling density and show how this enables us to determine the formation and size of topological domains. In addition, we demonstrate how the transient (partial) dissociation of DNA-bridging proteins results in the dynamic sampling of different topological states, which allows us to deduce the torsional stiffness of the plectonemic state and the kinetics of protein-plectoneme interactions. We expect our results to further the understanding and optimization of magnetic tweezer measurements and to enable quantification of the dynamics and reaction pathways of DNA processing enzymes in the context of physiologically relevant forces and supercoiling densities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA