Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 21(1): 17, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36726088

RESUMO

BACKGROUND: The majority of genes in the human genome is present in two copies but the expression levels of both alleles is not equal. Allelic imbalance is an aspect of gene expression relevant not only in the context of genetic variation, but also to understand the pathophysiology of genes implicated in genetic disorders, in particular, dominant genetic diseases where patients possess one normal and one mutant allele. Polyglutamine (polyQ) diseases are caused by the expansion of CAG trinucleotide tracts within specific genes. Spinocerebellar ataxia type 3 (SCA3) and Huntington's disease (HD) patients harbor one normal and one mutant allele that differ in the length of CAG tracts. However, assessing the expression level of individual alleles is challenging due to the presence of abundant CAG repeats in the human transcriptome, which make difficult the design of allele-specific methods, as well as of therapeutic strategies to selectively engage CAG sequences in mutant transcripts. RESULTS: To precisely quantify expression in an allele-specific manner, we used SNP variants that are linked to either normal or CAG expanded alleles of the ataxin-3 (ATXN3) and huntingtin (HTT) genes in selected patient-derived cell lines. We applied a SNP-based quantitative droplet digital PCR (ddPCR) protocol for precise determination of the levels of transcripts in cellular and mouse models. For HD, we showed that the process of cell differentiation can affect the ratio between endogenous alleles of HTT mRNA. Additionally, we reported changes in the absolute number of the ATXN3 and HTT transcripts per cell during neuronal differentiation. We also implemented our assay to reliably monitor, in an allele-specific manner, the silencing efficiency of mRNA-targeting therapeutic approaches for HD. Finally, using the humanized Hu128/21 HD mouse model, we showed that the ratio of normal and mutant HTT transgene expression in brain slightly changes with the age of mice. CONCLUSIONS: Using allele-specific ddPCR assays, we observed differences in allele expression levels in the context of SCA3 and HD. Our allele-selective approach is a reliable and quantitative method to analyze low abundant transcripts and is performed with high accuracy and reproducibility. Therefore, the use of this approach can significantly improve understanding of allele-related mechanisms, e.g., related with mRNA processing that may be affected in polyQ diseases.


Assuntos
Proteínas Repressoras , Expansão das Repetições de Trinucleotídeos , Humanos , Camundongos , Animais , Alelos , Ataxina-3/genética , Ataxina-3/metabolismo , Reprodutibilidade dos Testes , Expansão das Repetições de Trinucleotídeos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína Huntingtina/genética , Proteínas Repressoras/genética
2.
J Neurosci ; 41(4): 780-796, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33310753

RESUMO

Huntington disease (HD) is a neurodegenerative disease caused by a CAG trinucleotide repeat expansion in the huntingtin (HTT) gene. Therapeutics that lower HTT have shown preclinical promise and are being evaluated in clinical trials. However, clinical assessment of brain HTT lowering presents challenges. We have reported that mutant HTT (mHTT) in the CSF of HD patients correlates with clinical measures, including disease burden as well as motor and cognitive performance. We have also shown that lowering HTT in the brains of HD mice results in correlative reduction of mHTT in the CSF, prompting the use of this measure as an exploratory marker of target engagement in clinical trials. In this study, we investigate the mechanisms of mHTT clearance from the brain in adult mice of both sexes to elucidate the significance of therapy-induced CSF mHTT changes. We demonstrate that, although neurodegeneration increases CSF mHTT concentrations, mHTT is also present in the CSF of mice in the absence of neurodegeneration. Importantly, we show that secretion of mHTT from cells in the CNS followed by glymphatic clearance from the extracellular space contributes to mHTT in the CSF. Furthermore, we observe secretion of wild type HTT from healthy control neurons, suggesting that HTT secretion is a normal process occurring in the absence of pathogenesis. Overall, our data support both passive release and active clearance of mHTT into CSF, suggesting that its treatment-induced changes may represent a combination of target engagement and preservation of neurons.SIGNIFICANCE STATEMENT: Changes in CSF mutant huntingtin (mHTT) are being used as an exploratory endpoint in HTT lowering clinical trials for the treatment of Huntington disease (HD). Recently, it was demonstrated that intrathecal administration of a HTT lowering agent leads to dose-dependent reduction of CSF mHTT in HD patients. However, little is known about how HTT, an intracellular protein, reaches the extracellular space and ultimately the CSF. Our findings that HTT enters CSF by both passive release and active secretion followed by glymphatic clearance may have significant implications for interpretation of treatment-induced changes of CSF mHTT in clinical trials for HD.


Assuntos
Química Encefálica , Proteína Huntingtina/líquido cefalorraquidiano , Doença de Huntington/líquido cefalorraquidiano , Animais , Astrócitos/metabolismo , Biomarcadores/líquido cefalorraquidiano , Feminino , Sistema Glinfático/metabolismo , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Neurônios/metabolismo , Expansão das Repetições de Trinucleotídeos
3.
Neurobiol Dis ; 166: 105652, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35143966

RESUMO

Huntington disease (HD) is a neurodegenerative disease caused by a trinucleotide repeat expansion in the HTT gene encoding an elongated polyglutamine tract in the huntingtin (HTT) protein. Expanded mutant HTT (mHTT) is toxic and leads to regional atrophy and neuronal cell loss in the brain, which occurs earliest in the striatum. Therapeutic lowering of mHTT in the central nervous system (CNS) has shown promise in preclinical studies, with multiple approaches currently in clinical development for HD. Quantitation of mHTT in the cerebrospinal fluid (CSF) is being used as a clinical pharmacodynamic biomarker of target engagement in the CNS. We have previously shown that the CNS is a major source of mHTT in the CSF. However, little is known about the specific brain regions and cell types that contribute to CSF mHTT. Therefore, a better understanding of the origins of CSF mHTT and whether therapies targeting mHTT in the striatum would be expected to be associated with significant lowering of mHTT in the CSF is needed. Here, we use complementary pharmacological and genetic-based approaches to either restrict expression of mHTT to the striatum or selectively deplete mHTT in the striatum to evaluate the contribution of this brain region to mHTT in the CSF. We show that viral expression of a mHTT fragment restricted to the striatum leads to detectable mHTT in the CSF. We demonstrate that targeted lowering of mHTT selectively in the striatum using an antisense oligonucleotide leads to a significant reduction of mHTT in the CSF of HD mice. Furthermore, using a transgenic mouse model of HD that expresses full length human mHTT and wild type HTT, we show that genetic inactivation of mHTT selectively in the striatum results in a significant reduction of mHTT in the CSF. Taken together, our data supports the conclusion that the striatum contributes sufficiently to the pool of mHTT in the CSF that therapeutic levels of mHTT lowering in the striatum can be detected by this measure in HD mice. This suggests that CSF mHTT may represent a pharmacodynamic biomarker for therapies that lower mHTT in the striatum.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Animais , Biomarcadores/líquido cefalorraquidiano , Modelos Animais de Doenças , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Camundongos , Camundongos Transgênicos , Doenças Neurodegenerativas/genética , Expansão das Repetições de Trinucleotídeos/genética
4.
Hum Mol Genet ; 29(16): 2788-2802, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32898862

RESUMO

Huntington disease (HD) is a neurodegenerative disorder that is caused by a CAG repeat expansion in HTT. The length of this repeat, however, only explains a proportion of the variability in age of onset in patients. Genome-wide association studies have identified modifiers that contribute toward a proportion of the observed variance. By incorporating tissue-specific transcriptomic information with these results, additional modifiers can be identified. We performed a transcriptome-wide association study assessing heritable differences in genetically determined expression in diverse tissues, with genome-wide data from over 4000 patients. Functional validation of prioritized genes was undertaken in isogenic HD stem cells and patient brains. Enrichment analyses were performed with biologically relevant gene sets to identify the core pathways. HD-associated gene coexpression modules were assessed for associations with neurological phenotypes in an independent cohort and to guide drug repurposing analyses. Transcriptomic analyses identified genes that were associated with age of HD onset and displayed colocalization with gene expression signals in brain tissue (FAN1, GPR161, PMS2, SUMF2), with supporting evidence from functional experiments. This included genes involved in DNA repair, as well as novel-candidate modifier genes that have been associated with other neurological conditions. Further, cortical coexpression modules were also associated with cognitive decline and HD-related traits in a longitudinal cohort. In summary, the combination of population-scale gene expression information with HD patient genomic data identified novel modifier genes for the disorder. Further, these analyses expanded the pathways potentially involved in modifying HD onset and prioritized candidate therapeutics for future study.


Assuntos
Estudo de Associação Genômica Ampla , Proteína Huntingtina/genética , Doença de Huntington/genética , Transcriptoma/genética , Adulto , Idade de Início , Idoso , Reparo do DNA/genética , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/genética , Feminino , Regulação da Expressão Gênica/genética , Genoma/genética , Genômica , Humanos , Doença de Huntington/epidemiologia , Doença de Huntington/patologia , Masculino , Pessoa de Meia-Idade , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética , Enzimas Multifuncionais/genética , Especificidade de Órgãos/genética , Polimorfismo de Nucleotídeo Único/genética , Receptores Acoplados a Proteínas G/genética , Sulfatases/genética , Expansão das Repetições de Trinucleotídeos/genética
5.
Am J Hum Genet ; 105(6): 1112-1125, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31708117

RESUMO

Huntington disease (HD) is a fatal neurodegenerative disorder caused by a gain-of-function mutation in HTT. Suppression of mutant HTT has emerged as a leading therapeutic strategy for HD, with allele-selective approaches targeting HTT SNPs now in clinical trials. Haplotypes associated with the HD mutation (A1, A2, A3a) represent panels of allele-specific gene silencing targets for efficient treatment of individuals with HD of Northern European and indigenous South American ancestry. Here we extend comprehensive haplotype analysis of the HD mutation to key populations of Southern European, South Asian, Middle Eastern, and admixed African ancestry. In each of these populations, the HD mutation occurs predominantly on the A2 HTT haplotype. Analysis of HD haplotypes across all affected population groups enables rational selection of candidate target SNPs for development of allele-selective gene silencing therapeutics worldwide. Targeting SNPs on the A1 and A2 haplotypes in parallel is essential to achieve treatment of the most HD-affected subjects in populations where HD is most prevalent. Current allele-specific approaches will leave a majority of individuals with HD untreated in populations where the HD mutation occurs most frequently on the A2 haplotype. We further demonstrate preclinical development of potent and selective ASOs targeting SNPs on the A2 HTT haplotype, representing an allele-specific treatment strategy for these individuals. On the basis of comprehensive haplotype analysis, we show the maximum proportion of HD-affected subjects that may be treated with three or four allele targets in different populations worldwide, informing current allele-specific HTT silencing strategies.


Assuntos
Etnicidade/genética , Inativação Gênica , Haplótipos , Proteína Huntingtina/antagonistas & inibidores , Doença de Huntington/terapia , Mutação , Oligonucleotídeos Antissenso/uso terapêutico , Alelos , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Polimorfismo de Nucleotídeo Único , Prognóstico , Expansão das Repetições de Trinucleotídeos
6.
Nucleic Acids Res ; 48(1): 36-54, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31745548

RESUMO

Huntington disease (HD) is a fatal neurodegenerative disease caused by a pathogenic expansion of a CAG repeat in the huntingtin (HTT) gene. There are no disease-modifying therapies for HD. Artificial microRNAs targeting HTT transcripts for degradation have shown preclinical promise and will soon enter human clinical trials. Here, we examine the tolerability and efficacy of non-selective HTT lowering with an AAV5 encoded miRNA targeting human HTT (AAV5-miHTT) in the humanized Hu128/21 mouse model of HD. We show that intrastriatal administration of AAV5-miHTT results in potent and sustained HTT suppression for at least 7 months post-injection. Importantly, non-selective suppression of huntingtin was generally tolerated, however high dose AAV5-miHTT did induce astrogliosis. We observed an improvement of select behavioural and modest neuropathological HD-like phenotypes in Hu128/21 mice, suggesting a potential therapeutic benefit of miRNA-mediated non-selective HTT lowering. Finally, we also observed that potent reduction of wild type HTT (wtHTT) in Hu21 control mice was tolerated up to 7 months post-injection but may induce impairment of motor coordination and striatal atrophy. Taken together, our data suggests that in the context of HD, the therapeutic benefits of mHTT reduction may outweigh the potentially detrimental effects of wtHTT loss following non-selective HTT lowering.


Assuntos
Proteína Huntingtina/genética , Doença de Huntington/terapia , MicroRNAs/genética , Terapia de Alvo Molecular/métodos , Parvovirinae/genética , RNA Mensageiro/genética , Animais , Animais Geneticamente Modificados , Astrócitos/metabolismo , Astrócitos/patologia , Sequência de Bases , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Dependovirus , Modelos Animais de Doenças , Dosagem de Genes , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Proteína Huntingtina/antagonistas & inibidores , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Camundongos , MicroRNAs/administração & dosagem , MicroRNAs/metabolismo , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Parvovirinae/metabolismo , Desempenho Psicomotor , Estabilidade de RNA , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/metabolismo , Repetições de Trinucleotídeos
7.
Proc Natl Acad Sci U S A ; 116(19): 9622-9627, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31015293

RESUMO

White matter abnormalities are a nearly universal pathological feature of neurodegenerative disorders including Huntington disease (HD). A long-held assumption is that this white matter pathology is simply a secondary outcome of the progressive neuronal loss that manifests with advancing disease. Using a mouse model of HD, here we show that white matter and myelination abnormalities are an early disease feature appearing before the manifestation of any behavioral abnormalities or neuronal loss. We further show that selective inactivation of mutant huntingtin (mHTT) in the NG2+ oligodendrocyte progenitor cell population prevented myelin abnormalities and certain behavioral deficits in HD mice. Strikingly, the improvements in behavioral outcomes were seen despite the continued expression of mHTT in nonoligodendroglial cells including neurons, astrocytes, and microglia. Using RNA-seq and ChIP-seq analyses, we implicate a pathogenic mechanism that involves enhancement of polycomb repressive complex 2 (PRC2) activity by mHTT in the intrinsic oligodendroglial dysfunction and myelination deficits observed in HD. Our findings challenge the long-held dogma regarding the etiology of white matter pathology in HD and highlight the contribution of epigenetic mechanisms to the observed intrinsic oligodendroglial dysfunction. Our results further suggest that ameliorating white matter pathology and oligodendroglial dysfunction may be beneficial for HD.


Assuntos
Comportamento Animal , Doenças Desmielinizantes , Proteína Huntingtina , Doença de Huntington , Mutação , Oligodendroglia , Animais , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Camundongos , Camundongos Mutantes , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Substância Branca/metabolismo , Substância Branca/patologia
8.
Neurobiol Dis ; 158: 105479, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34390831

RESUMO

Huntington disease (HD) is a neurodegenerative disorder caused by a CAG expansion in the HTT gene that codes for an elongated polyglutamine tract in the huntingtin (HTT) protein. HTT is subject to multiple post-translational modifications (PTMs) that regulate its cellular function. Mutating specific PTM sites within mutant HTT (mHTT) in HD mouse models can modulate disease phenotypes, highlighting the key role of HTT PTMs in the pathogenesis of HD. These findings have led to increased interest in developing small molecules to modulate HTT PTMs in order to decrease mHTT toxicity. However, the therapeutic efficacy of pharmacological modulation of HTT PTMs in preclinical HD models remains largely unknown. HTT is palmitoylated at cysteine 214 by the huntingtin-interacting protein 14 (HIP14 or ZDHHC17) and 14-like (HIP14L or ZDHHC13) acyltransferases. Here, we assessed if HTT palmitoylation should be regarded as a therapeutic target to treat HD by (1) investigating palmitoylation dysregulation in rodent and human HD model systems, (2) measuring the impact of mHTT-lowering therapy on brain palmitoylation, and (3) evaluating if HTT palmitoylation can be pharmacologically modulated. We show that palmitoylation of mHTT and some HIP14/HIP14L-substrates is decreased early in multiple HD mouse models, and that mHTT palmitoylation decreases further with aging. Lowering mHTT in the brain of YAC128 mice is not sufficient to rescue aberrant palmitoylation. However, we demonstrate that mHTT palmitoylation can be normalized in COS-7 cells, in YAC128 cortico-striatal primary neurons and HD patient-derived lymphoblasts using an acyl-protein thioesterase (APT) inhibitor. Moreover, we show that modulating palmitoylation reduces mHTT aggregation and mHTT-induced cytotoxicity in COS-7 cells and YAC128 neurons.


Assuntos
Proteína Huntingtina/genética , Proteína Huntingtina/toxicidade , Lipoilação/efeitos dos fármacos , Lipoilação/genética , Aciltransferases/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Cisteína/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Feminino , Humanos , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Masculino , Camundongos , Mutação , Proteínas do Tecido Nervoso/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos
9.
Hum Mol Genet ; 23(9): 2324-38, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24334607

RESUMO

Huntington's disease (HD) is an autosomal dominant, neurodegenerative disorder that can be characterized by the presence of protein inclusions containing mutant huntingtin within a subset of neurons in the brain. Since their discovery, the relevance of inclusions to disease pathology has been controversial. We show using super-resolution fluorescence imaging and Förster resonance energy transfer (FRET) in live cells, that mutant huntingtin fragments can form two morphologically and conformationally distinct inclusion types. Using fluorescence recovery after photobleaching (FRAP), we demonstrate that the two huntingtin inclusion types have unique dynamic properties. The ability to form one or the other type of inclusion can be influenced by the phosphorylation state of serine residues at amino acid positions 13 and 16 within the huntingtin protein. We can define two types of inclusions: fibrillar, which are tightly packed, do not exchange protein with the soluble phase, and result from phospho-modification at serines 13 and 16 of the N17 domain, and globular, which are loosely packed, can readily exchange with the soluble phase, and are not phosphorylated in N17. We hypothesize that the protective effect of N17 phosphorylation or phospho-mimicry seen in animal models, at the level of protein inclusions with elevated huntingtin levels, is to induce a conformation of the huntingtin amino-terminus that causes fragments to form tightly packed inclusions that do not exit the insoluble phase, and hence exert less toxicity. The identification of these sub-types of huntingtin inclusions could allow for drug discovery to promote protective inclusions of mutant huntingtin protein in HD.


Assuntos
Doença de Huntington/metabolismo , Corpos de Inclusão/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Animais , Recuperação de Fluorescência Após Fotodegradação , Transferência Ressonante de Energia de Fluorescência , Proteína Huntingtina , Camundongos , Fosforilação , Técnicas de Cultura de Tecidos
10.
Mol Ther ; 23(11): 1759-1771, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26201449

RESUMO

Huntington disease (HD) is a dominant neurodegenerative disorder caused by a CAG repeat expansion in the Huntingtin gene (HTT). Heterozygous polymorphisms in cis with the mutation allow for allele-specific suppression of the pathogenic HTT transcript as a therapeutic strategy. To prioritize target selection, precise heterozygosity estimates are needed across diverse HD patient populations. Here we present the first comprehensive investigation of all common target alleles across the HTT gene, using 738 reference haplotypes from the 1000 Genomes Project and 2364 haplotypes from HD patients and relatives in Canada, Sweden, France, and Italy. The most common HD haplotypes (A1, A2, and A3a) define mutually exclusive sets of polymorphisms for allele-specific therapy in the greatest number of patients. Across all four populations, a maximum of 80% are treatable using these three target haplotypes. We identify a novel deletion found exclusively on the A1 haplotype, enabling potent and selective silencing of mutant HTT in approximately 40% of the patients. Antisense oligonucleotides complementary to the deletion reduce mutant A1 HTT mRNA by 78% in patient cells while sparing wild-type HTT expression. By suppressing specific haplotypes on which expanded CAG occurs, we demonstrate a rational approach to the development of allele-specific therapy for a monogenic disorder.


Assuntos
Terapia Genética/métodos , Doença de Huntington/genética , Doença de Huntington/terapia , Proteínas do Tecido Nervoso/genética , Alelos , Expressão Gênica , Marcação de Genes , Haplótipos/genética , Heterozigoto , Humanos , Proteína Huntingtina , Mutação INDEL/genética , Oligonucleotídeos Antissenso/genética , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/genética , Expansão das Repetições de Trinucleotídeos/genética , População Branca/genética
11.
J Control Release ; 367: 27-44, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38215984

RESUMO

Efficient delivery of therapeutics to the central nervous system (CNS) remains a major challenge for the treatment of neurological diseases. Huntington disease (HD) is a dominantly inherited neurodegenerative disorder caused by a CAG trinucleotide expansion mutation in the HTT gene which codes for a toxic mutant huntingtin (mHTT) protein. Pharmacological reduction of mHTT in the CNS using antisense oligonucleotides (ASO) ameliorates HD-like phenotypes in rodent models of HD, with such therapies being investigated in clinical trials for HD. In this study, we report the optimization of apolipoprotein A-I nanodisks (apoA-I NDs) as vehicles for delivery of a HTT-targeted ASO (HTT ASO) to the brain and peripheral organs for HD. We demonstrate that apoA-I wild type (WT) and the apoA-I K133C mutant incubated with a synthetic lipid, 1,2-dimyristoyl-sn-glycero-3-phosphocholine, can self-assemble into monodisperse discoidal particles with diameters <20 nm that transmigrate across an in vitro blood-brain barrier model of HD. We demonstrate that apoA-I NDs are well tolerated in vivo, and that apoA-I K133C NDs show enhanced distribution to the CNS and peripheral organs compared to apoA-I WT NDs following systemic administration. ApoA-I K133C conjugated with HTT ASO forms NDs (HTT ASO NDs) that induce significant mHTT lowering in the liver, skeletal muscle and heart as well as in the brain when delivered intravenously in the BACHD mouse model of HD. Furthermore, HTT ASO NDs increase the magnitude of mHTT lowering in the striatum and cortex compared to HTT ASO alone following intracerebroventricular administration. These findings demonstrate the potential utility of apoA-I NDs as biocompatible vehicles for enhancing delivery of mutant HTT lowering ASOs to the CNS and peripheral organs for HD.


Assuntos
Doença de Huntington , Oligonucleotídeos Antissenso , Camundongos , Animais , Oligonucleotídeos Antissenso/uso terapêutico , Apolipoproteína A-I/genética , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Oligonucleotídeos/uso terapêutico , Encéfalo/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Proteína Huntingtina/uso terapêutico , Modelos Animais de Doenças
12.
Hum Gene Ther ; 34(17-18): 958-974, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37658843

RESUMO

Huntington's disease (HD) is a fatal neurodegenerative disorder caused by a toxic gain-of-function CAG expansion in the first exon of the huntingtin (HTT) gene. The monogenic nature of HD makes mutant HTT (mHTT) inactivation a promising therapeutic strategy. Single nucleotide polymorphisms frequently associated with CAG expansion have been explored to selectively inactivate mHTT allele using the CRISPR/Cas9 system. One of such allele-selective approaches consists of excising a region flanking the first exon of mHTT by inducing simultaneous double-strand breaks at upstream and downstream positions of the mHTT exon 1. The removal of the first exon of mHTT deletes the CAG expansion and important transcription regulatory sites, leading to mHTT inactivation. However, the frequency of deletion events is yet to be quantified either in vitro or in vivo. Here, we developed accurate quantitative digital polymerase chain reaction-based assays to assess HTT exon 1 deletion in vitro and in fully humanized HU97/18 mice. Our results demonstrate that dual-single guide RNA (sgRNA) strategies are efficient and that 67% of HTT editing events are leading to exon 1 deletion in HEK293T cells. In contrast, these sgRNA actively cleaved HTT in HU97/18 mice, but most editing events do not lead to exon 1 deletion (10% exon 1 deletion). We also showed that the in vivo editing pattern is not affected by CAG expansion but may potentially be due to the presence of multiple copies of wildtype (wt)/mHTT genes HU97/18 mice as well as the slow kinetics of AAV-mediated CRISPR/Cas9 delivery.


Assuntos
Doenças do Sistema Nervoso Central , Doença de Huntington , Humanos , Animais , Camundongos , RNA Guia de Sistemas CRISPR-Cas , Células HEK293 , Éxons/genética , Alelos , Doença de Huntington/genética , Doença de Huntington/terapia , Sistema Nervoso Central
13.
J Control Release ; 360: 913-927, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37468110

RESUMO

Lowering mutant huntingtin (mHTT) in the central nervous system (CNS) using antisense oligonucleotides (ASOs) is a promising approach currently being evaluated in clinical trials for Huntington disease (HD). However, the therapeutic potential of ASOs in HD patients is limited by their inability to cross the blood-brain barrier (BBB). In non-human primates, intrathecal infusion of ASOs results in limited brain distribution, with higher ASO concentrations in superficial regions and lower concentrations in deeper regions, such as the basal ganglia. To address the need for improved delivery of ASOs to the brain, we are evaluating the therapeutic potential of apolipoprotein A-I nanodisks (apoA-I NDs) as novel delivery vehicles for mHTT-lowering ASOs to the CNS after intranasal administration. Here, we have demonstrated the ability of apoA-I nanodisks to bypass the BBB after intranasal delivery in the BACHD model of HD. Following intranasal administration of apoA-I NDs, apoA-I protein levels were elevated along the rostral-caudal brain axis, with highest levels in the most rostral brain regions including the olfactory bulb and frontal cortex. Double-label immunohistochemistry indicates that both the apoA-I and ASO deposit in neurons. Most importantly, a single intranasal dose of apoA-I ASO-NDs significantly reduces mHTT levels in the brain regions most affected in HD, namely the cortex and striatum. This approach represents a novel non-invasive means for improving delivery and brain distribution of oligonucleotide therapies and enhancing likelihood of efficacy. Improved ASO delivery to the brain has widespread application for treatment of many other CNS disorders.


Assuntos
Doença de Huntington , Oligonucleotídeos Antissenso , Animais , Oligonucleotídeos Antissenso/uso terapêutico , Apolipoproteína A-I/genética , Encéfalo/metabolismo , Barreira Hematoencefálica/metabolismo , Doença de Huntington/tratamento farmacológico , Doença de Huntington/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo
14.
Hum Genome Var ; 9(1): 10, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35422034

RESUMO

CAG-expanded ATXN7 has been previously defined in the pathogenesis of spinocerebellar ataxia type 7 (SCA7), a polyglutamine expansion autosomal dominant cerebellar ataxia. Pathology in SCA7 occurs as a result of a CAG triplet repeat expansion in excess of 37 in the first exon of ATXN7, which encodes ataxin-7. SCA7 presents clinically with spinocerebellar ataxia and cone-rod dystrophy. Here, we present a novel spinocerebellar ataxia variant occurring in a patient with mutations in both ATXN7 and TOP1MT, which encodes mitochondrial topoisomerase I (top1mt). Using machine-guided, unbiased microscopy image analysis, we demonstrate alterations in ataxin-7 subcellular localization, and through high-fidelity measurements of cellular respiration, bioenergetic defects in association with top1mt mutations. We identify ataxin-7 Q35P and top1mt R111W as deleterious mutations, potentially contributing to disease states. We recapitulate our mutations through Drosophila genetic models. Our work provides important insight into the cellular biology of ataxin-7 and top1mt and offers insight into the pathogenesis of spinocerebellar ataxia applicable to multiple subtypes of the illness. Moreover, our study demonstrates an effective pipeline for the characterization of previously unreported genetic variants at the level of cell biology.

15.
Brain Commun ; 4(6): fcac309, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523269

RESUMO

The identification of molecular biomarkers in CSF from individuals affected by Huntington disease may help improve predictions of disease onset, better define disease progression and could facilitate the evaluation of potential therapies. The primary objective of our study was to investigate novel CSF protein candidates and replicate previously reported protein biomarker changes in CSF from Huntington disease mutation carriers and healthy controls. Our secondary objective was to compare the discriminatory potential of individual protein analytes and combinations of CSF protein markers for stratifying individuals based on the severity of Huntington disease. We conducted a hypothesis-driven analysis of 26 pre-specified protein analytes in CSF from 16 manifest Huntington disease subjects, eight premanifest Huntington disease mutation carriers and eight healthy control individuals using parallel-reaction monitoring mass spectrometry. In addition to reproducing reported changes in previously investigated CSF biomarkers (NEFL, PDYN, and PENK), we also identified novel exploratory CSF proteins (C1QB, CNR1, GNAL, IDO1, IGF2, and PPP1R1B) whose levels were altered in Huntington disease mutation carriers and/or across stages of disease. Moreover, we report strong associations of select CSF proteins with clinical measures of disease severity in manifest Huntington disease subjects (C1QB, CNR1, NEFL, PDYN, PPP1R1B, and TTR) and with years to predicted disease onset in premanifest Huntington disease mutation carriers (ALB, C4B, CTSD, IGHG1, and TTR). Using receiver operating characteristic curve analysis, we identified PENK as being the most discriminant CSF protein for stratifying Huntington disease mutation carriers from controls. We also identified exploratory multi-marker CSF protein panels that improved discrimination of premanifest Huntington disease mutation carriers from controls (PENK, ALB and NEFL), early/mid-stage Huntington disease from premanifest mutation carriers (PPP1R1B, TTR, CHI3L1, and CTSD), and late-stage from early/mid-stage Huntington disease (CNR1, PPP1R1B, BDNF, APOE, and IGHG1) compared with individual CSF proteins. In this study, we demonstrate that combinations of CSF proteins can outperform individual markers for stratifying individuals based on Huntington disease mutation status and disease severity. Moreover, we define exploratory multi-marker CSF protein panels that, if validated, may be used to improve the accuracy of disease-onset predictions, complement existing clinical and imaging biomarkers for monitoring the severity of Huntington disease, and potentially for assessing therapeutic response in clinical trials. Additional studies with CSF collected from larger cohorts of Huntington disease mutation carriers are needed to replicate these exploratory findings.

16.
J Huntingtons Dis ; 10(3): 355-365, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34092649

RESUMO

BACKGROUND: Therapeutics that lower mutant huntingtin (mHTT) have shown promise in preclinical studies and are in clinical development for the treatment of Huntington disease (HD). Multiple assays have been developed that either quantify mHTT or total HTT but may not accurately measure levels of wild type HTT (wtHTT) in biological samples. OBJECTIVE: To optimize a method that can be used to resolve, quantify and directly compare levels of full length wtHTT and mHTT in HD samples. METHODS: We provide a detailed quantitative immunoblotting protocol to reproducibly resolve full length wtHTT and mHTT in multiple HD mouse and patient samples. RESULTS: We show that this assay can be modified, depending on the sample, to resolve wtHTT and mHTT with a wide range of polyglutamine length differences (ΔQs 22-179). We also demonstrate that this method can be used to quantify allele-selective lowering of mHTT using an antisense oligonucleotide in HD patient-derived cells. CONCLUSION: This quantitative immunoblotting method can be used to reliably resolve full-length HTT alleles with ΔQs≥22 and allows for direct comparison of wtHTT and mHTT levels in HD samples.


Assuntos
Doença de Huntington , Alelos , Animais , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Immunoblotting , Camundongos
17.
Front Aging Neurosci ; 12: 524369, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192449

RESUMO

Huntington disease (HD) is a fatal, inherited neurodegenerative disorder caused by a mutation in the huntingtin (HTT) gene. While mutant HTT is present ubiquitously throughout life, HD onset typically occurs in mid-life. Oxidative damage accumulates in the aging brain and is a feature of HD. We sought to interrogate the roles and interaction of age and oxidative stress in HD using primary Hu97/18 mouse neurons, neurons differentiated from HD patient induced pluripotent stem cells (iPSCs), and the brains of HD mice. We find that primary neurons must be matured in culture for canonical stress responses to occur. Furthermore, when aging is accelerated in mature HD neurons, mutant HTT accumulates and sensitivity to oxidative stress is selectively enhanced. Furthermore, we observe HD-specific phenotypes in neurons and mouse brains that have undergone accelerated aging, including a selective increase in DNA damage. These findings suggest a role for aging in HD pathogenesis and an interaction between the biological age of HD neurons and sensitivity to exogenous stress.

18.
Front Cell Neurosci ; 14: 590569, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33250715

RESUMO

Huntington disease (HD) is a devastating neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. Disrupted cortico-striatal transmission is an early event that contributes to neuronal spine and synapse dysfunction primarily in striatal medium spiny neurons, the most vulnerable cell type in the disease, but also in neurons of other brain regions including the cortex. Although striatal and cortical neurons eventually degenerate, these synaptic and circuit changes may underlie some of the earliest motor, cognitive, and psychiatric symptoms. Moreover, synaptic dysfunction and spine loss are hypothesized to be therapeutically reversible before neuronal death occurs, and restoration of normal synaptic function may delay neurodegeneration. One of the earliest synaptic alterations to occur in HD mouse models is enhanced striatal extrasynaptic NMDA receptor expression and activity. This activity is mediated primarily through GluN2B subunit-containing receptors and is associated with increased activation of cell death pathways, inhibition of survival signaling, and greater susceptibility to excitotoxicity. Death-associated protein kinase 1 (DAPK1) is a pro-apoptotic kinase highly expressed in neurons during development. In the adult brain, DAPK1 becomes re-activated and recruited to extrasynaptic NMDAR complexes during neuronal death, where it phosphorylates GluN2B at S1303, amplifying toxic receptor function. Approaches to reduce DAPK1 activity have demonstrated benefit in animal models of stroke, Alzheimer's disease, Parkinson's disease, and chronic stress, indicating that DAPK1 may be a novel target for neuroprotection. Here, we demonstrate that dysregulation of DAPK1 occurs early in the YAC128 HD mouse model, and contributes to elevated extrasynaptic GluN2B S1303 phosphorylation. Inhibition of DAPK1 normalizes extrasynaptic GluN2B phosphorylation and surface expression, and completely prevents YAC128 striatal spine loss in cortico-striatal co-culture, thus validating DAPK1 as a potential target for synaptic protection in HD and warranting further development of DAPK1-targeted therapies for neurodegeneration.

19.
Lancet Neurol ; 19(11): 930-939, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33098802

RESUMO

BACKGROUND: Huntington's disease is a fatal neurodegenerative disorder that is caused by CAG-CAA repeat expansion, encoding polyglutamine, in the huntingtin (HTT) gene. Current age-of-clinical-onset prediction models for Huntington's disease are based on polyglutamine length and explain only a proportion of the variability in age of onset observed between patients. These length-based assays do not interrogate the underlying genetic variation, because known genetic variants in this region do not alter the protein coding sequence. Given that individuals with identical repeat lengths can present with Huntington's disease decades apart, the search for genetic modifiers of clinical age of onset has become an active area of research. RECENT DEVELOPMENTS: Results from three independent genetic studies of Huntington's disease have shown that glutamine-encoding CAA variants that interrupt DNA CAG repeat tracts, but do not alter polyglutamine length or polyglutamine homogeneity, are associated with substantial differences in age of onset of Huntington's disease in carriers. A variant that results in the loss of CAA interruption is associated with early onset and is particularly relevant to individuals that carry alleles in the reduced penetrance range (ie, CAG 36-39). Approximately a third of clinically manifesting carriers of reduced penetrance alleles, defined by current diagnostics, carry this variant. Somatic repeat instability, modified by interrupted CAG tracts, is the most probable cause mediating this effect. This relationship is supported by genome-wide screens for disease modifiers, which have revealed the importance of DNA-repair genes in Huntington's disease (ie, FAN1, LIG1, MLH1, MSH3, PMS1, and PMS2). WHERE NEXT?: Focus needs to be placed on refining our understanding of the effect of the loss-of-interruption and duplication-of-interruption variants and other interrupting sequence variants on age of onset, and assessing their effect in disease-relevant brain tissues, as well as in diverse population groups, such as individuals from Africa and Asia. Diagnostic tests should be augmented or updated, since current tests do not assess the underlying DNA sequence variation, especially when assessing individuals that carry alleles in the reduced penetrance range. Future studies should explore somatic repeat instability and DNA repair as new therapeutic targets to modify age of onset in Huntington's disease and in other repeat-mediated disorders. Disease-modifying therapies could potentially be developed by therapeutically targeting these processes. Promising approaches include therapeutically targeting the expanded repeat or directly perturbing key DNA-repair genes (eg, with antisense oligonucleotides or small molecules). Targeting the CAG repeat directly with naphthyridine-azaquinolone, a compound that induces contractions, and altering the expression of MSH3, represent two viable therapeutic strategies. However, as a first step, the capability of such novel therapeutic approaches to delay clinical onset in animal models should be assessed.


Assuntos
Terapia Genética/tendências , Variação Genética/genética , Proteína Huntingtina/genética , Doença de Huntington/epidemiologia , Doença de Huntington/genética , Idade de Início , Animais , Terapia Genética/métodos , Humanos , Doença de Huntington/terapia
20.
Cell Chem Biol ; 26(9): 1295-1305.e6, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31353319

RESUMO

Aberrant activation of caspase-6 (C6) in the absence of other hallmarks of apoptosis has been demonstrated in cells and tissues from patients with Huntington disease (HD) and animal models. C6 activity correlates with disease progression in patients with HD and the cleavage of mutant huntingtin (mHTT) protein is thought to strongly contribute to disease pathogenesis. Here we show that the mHTT1-586 fragment generated by C6 cleavage interacts with the zymogen form of the enzyme, stabilizing a conformation that contains an active site and is prone to full activation. This shift toward enhanced activity can be prevented by a small-molecule inhibitor that blocks the interaction between C6 and mHTT1-586. Molecular docking studies suggest that the inhibitor binds an allosteric site in the C6 zymogen. The interaction of mHTT1-586 with C6 may therefore promote a self-reinforcing, feedforward cycle of C6 zymogen activation and mHTT cleavage driving HD pathogenesis.


Assuntos
Caspase 6/metabolismo , Proteína Huntingtina/genética , Doença de Huntington/metabolismo , Regulação Alostérica/genética , Animais , Apoptose , Células COS , Caspase 6/fisiologia , Chlorocebus aethiops , Proteína Huntingtina/metabolismo , Doença de Huntington/patologia , Simulação de Acoplamento Molecular/métodos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA