Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39350499

RESUMO

PURPOSE: This study examines failure rates, complication rates and patient-reported outcome measures (PROMs) for meniscal all-inside (AI) and inside-out (IO) repair techniques. METHODS: A systematic search was conducted on PubMed, Embase and Cochrane (inception to January 2024) assessing for Level I-III studies evaluating outcomes after meniscal repair. The primary outcome regarded differences in failure rates between AI and IO repair techniques. Secondary outcomes included a comparison of complication rates and PROMs. Quality assessment was performed using the Grading of Recommendations Assessment, Development and Evaluation and Methodological Index for Non-Randomized Studies criteria. A meta-analysis was conducted for outcomes reported by more than three comparative studies. RESULTS: A total of 24 studies (13 studies and 912 menisci for AI vs. 17 studies and 1,117 menisci for IO) were included. The mean follow-up ranges were 22-192 months (AI) and 18.5-155 months (IO). The overall reported AI failure rate ranged from 5% to 35% compared to 0% to 25% within the IO group. When comparing meniscal repair failure rates in the setting of concomitant anterior cruciate ligament reconstruction, the AI group had a failure rate (AI: 5%-34%; IO: 0%-12.9%). The complication rate ranged from 0% to 40% for AI and 0% to 20.5% for IO. Post-operative PROM scores ranged from 81.2 to 93.8 (AI) versus 89.6 to 94 (IO) for IKDC and 4.0-7.02 (AI) versus 4.0-8.0 (IO) for Tegner. Upon pooling of six comparative studies, a significantly lower failure rate favouring the IO technique was observed (15.9% AI vs. 11.1% IO; p = 0.02), although this result was influenced by a study with a predominantly elite athlete population. Moreover, no significant differences were found regarding complication rates between cohorts (7.3% AI vs. 4.8% IO; p = 0.86). CONCLUSION: The present study underscores comparable clinical success between AI and IO meniscal repair techniques, with both techniques demonstrating similar complication rates. However, the AI repair technique was associated with 1.77 times higher odds of failure compared to the IO cohort. LEVEL OF EVIDENCE: Level III.

2.
Environ Microbiol ; 25(12): 3333-3348, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37864320

RESUMO

Heritable, facultative symbionts are common in arthropods, often functioning in host defence. Despite moderately reduced genomes, facultative symbionts retain evolutionary potential through mobile genetic elements (MGEs). MGEs form the primary basis of strain-level variation in genome content and architecture, and often correlate with variability in symbiont-mediated phenotypes. In pea aphids (Acyrthosiphon pisum), strain-level variation in the type of toxin-encoding bacteriophages (APSEs) carried by the bacterium Hamiltonella defensa correlates with strength of defence against parasitoids. However, co-inheritance creates difficulties for partitioning their relative contributions to aphid defence. Here we identified isolates of H. defensa that were nearly identical except for APSE type. When holding H. defensa genotype constant, protection levels corresponded to APSE virulence module type. Results further indicated that APSEs move repeatedly within some H. defensa clades providing a mechanism for rapid evolution in anti-parasitoid defences. Strain variation in H. defensa also correlates with the presence of a second symbiont Fukatsuia symbiotica. Predictions that nutritional interactions structured this coinfection were not supported by comparative genomics, but bacteriocin-containing plasmids unique to co-infecting strains may contribute to their common pairing. In conclusion, strain diversity, and joint capacities for horizontal transfer of MGEs and symbionts, are emergent players in the rapid evolution of arthropods.


Assuntos
Afídeos , Bacteriófagos , Vespas , Animais , Afídeos/genética , Afídeos/microbiologia , Simbiose/genética , Enterobacteriaceae/genética , Genótipo , Bacteriófagos/genética
3.
J Evol Biol ; 36(12): 1712-1730, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37702036

RESUMO

Most insects harbour influential, yet non-essential heritable microbes in their hemocoel. Communities of these symbionts exhibit low diversity. But their frequent multi-species nature raises intriguing questions on roles for symbiont-symbiont synergies in host adaptation, and on the stability of the symbiont communities, themselves. In this study, we build on knowledge of species-defined symbiont community structure across US populations of the pea aphid, Acyrthosiphon pisum. Through extensive symbiont genotyping, we show that pea aphids' microbiomes can be more precisely defined at the symbiont strain level, with strain variability shaping five out of nine previously reported co-infection trends. Field data provide a mixture of evidence for synergistic fitness effects and symbiont hitchhiking, revealing causes and consequences of these co-infection trends. To test whether within-host metabolic interactions predict common versus rare strain-defined communities, we leveraged the high relatedness of our dominant, community-defined symbiont strains vs. 12 pea aphid-derived Gammaproteobacteria with sequenced genomes. Genomic inference, using metabolic complementarity indices, revealed high potential for cooperation among one pair of symbionts-Serratia symbiotica and Rickettsiella viridis. Applying the expansion network algorithm, through additional use of pea aphid and obligate Buchnera symbiont genomes, Serratia and Rickettsiella emerged as the only symbiont community requiring both parties to expand holobiont metabolism. Through their joint expansion of the biotin biosynthesis pathway, these symbionts may span missing gaps, creating a multi-party mutualism within their nutrient-limited, phloem-feeding hosts. Recent, complementary gene inactivation, within the biotin pathways of Serratia and Rickettsiella, raises further questions on the origins of mutualisms and host-symbiont interdependencies.


Assuntos
Afídeos , Coinfecção , Coxiellaceae , Gammaproteobacteria , Animais , Afídeos/genética , Afídeos/microbiologia , Pisum sativum , Biotina , Coxiellaceae/genética , Simbiose/genética
5.
Nat Genet ; 37(10): 1099-103, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16142235

RESUMO

Cultured human embryonic stem cell (hESC) lines are an invaluable resource because they provide a uniform and stable genetic system for functional analyses and therapeutic applications. Nevertheless, these dividing cells, like other cells, probably undergo spontaneous mutation at a rate of 10(-9) per nucleotide. Because each mutant has only a few progeny, the overall biological properties of the cell culture are not altered unless a mutation provides a survival or growth advantage. Clonal evolution that leads to emergence of a dominant mutant genotype may potentially affect cellular phenotype as well. We assessed the genomic fidelity of paired early- and late-passage hESC lines in the course of tissue culture. Relative to early-passage lines, eight of nine late-passage hESC lines had one or more genomic alterations commonly observed in human cancers, including aberrations in copy number (45%), mitochondrial DNA sequence (22%) and gene promoter methylation (90%), although the latter was essentially restricted to 2 of 14 promoters examined. The observation that hESC lines maintained in vitro develop genetic and epigenetic alterations implies that periodic monitoring of these lines will be required before they are used in in vivo applications and that some late-passage hESC lines may be unusable for therapeutic purposes.


Assuntos
Embrião de Mamíferos/citologia , Genoma Humano/genética , Mutação , Células-Tronco/metabolismo , Técnicas de Cultura de Células , Linhagem Celular , DNA/genética , DNA/metabolismo , Metilação de DNA , DNA Mitocondrial/química , Humanos , Regiões Promotoras Genéticas
6.
Orthopedics ; 47(5): 301-307, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38935847

RESUMO

BACKGROUND: Antiphospholipid syndrome (APS) is a systemic autoimmune condition that predisposes patients to venous thromboembolism (VTE). Although many studies have explored risk factors for VTE after joint reconstructive procedures, the impact of APS is still unclear. MATERIALS AND METHODS: A retrospective cohort study was conducted using TriNetX, a health care database that includes 442,494 patients undergoing total hip arthroplasty (THA) or total knee arthroplasty (TKA). Ninety-day postoperative complications and 1- and 2-year surgical complications were compared between patients with and without preexisting APS. Patients underwent propensity score matching in a 1:1 ratio based on relevant comorbidities. RESULTS: Patients undergoing THA or TKA with APS, compared with those without, had higher rates of deep venous thrombosis (hip: 9.2% vs 6.0%, odds ratio, 1.589, P=.022; knee: 10.5% vs 4.1%, odds ratio, 2.763, P<.001), pulmonary embolism (hip: 6.9% vs 3.6%, odds ratio, 1.992, P=.005; knee: 8.4% vs 3.0%, odds ratio, 2.989, P<.001), and anemia (hip: 24.8% vs 18.6%, odds ratio, 1.447, P=.004; knee: 18.5% vs 13.9%, odds ratio, 1.406, P=.007). Patients undergoing THA with APS also had higher rates of urinary tract infection (5.0% vs 2.8%, odds ratio, 1.842, P=.029) and pneumonia (3.7% vs 1.8%, odds ratio, 2.119, P=.025). APS did not impact rates of surgical complications or revision surgery. CONCLUSION: Overall, APS heightens patients' risk for complications after THA and TKA. Specific anticoagulation protocols and preoperative risk stratification should be implemented to reduce the risk of adverse events. [Orthopedics. 2024;47(5):301-307.].


Assuntos
Síndrome Antifosfolipídica , Artroplastia de Quadril , Artroplastia do Joelho , Complicações Pós-Operatórias , Humanos , Artroplastia do Joelho/efeitos adversos , Síndrome Antifosfolipídica/complicações , Feminino , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Artroplastia de Quadril/efeitos adversos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , Fatores de Risco , Estudos de Coortes , Adulto
7.
Curr Rev Musculoskelet Med ; 17(11): 484-495, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39102076

RESUMO

PURPOSE OF REVIEW: The tibial tubercle osteotomy (TTO) is a versatile surgical technique used to treat a range of patellofemoral disorders, including patellar instability, painful malalignment, focal chondral defects, and patellar maltracking that have failed conservative therapies. TTO is a personalized procedure that can be tailored to the pathoanatomy of the patient based on physical examination and imaging. The complication rate associated with TTO strongly depends on the indication for surgery, the severity of the patient's condition, and the surgical approach. Despite the literature on TTO, to our knowledge, no single source has addressed the indications, techniques, outcomes, and complications of this procedure. The purpose of this article is to serve as such a valuable resource. RECENT FINDINGS: Highlights from recent studies we would like to emphasize are two-fold. First, maintaining a distal cortical hinge yields lower complication rates than osteotomies involving complete tubercle detachment with classic or standard techniques. Second, based on current evidence, TTO consistently provides symptomatic relief, and most patients can return to work or sport at their pre-operative level within 3 and 6 months, respectively. TTO is a personalizable surgical technique that may be utilized for multiple patellofemoral disorders and is associated with good outcomes.

8.
Stem Cell Reports ; 18(8): 1599-1609, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-36563687

RESUMO

Developing cellular therapies is not straightforward. This Perspective summarizes the experience of a group of academic stem cell investigators working in different clinical areas and aims to share insight into what we wished we knew before starting. These include (1) choosing the stem cell line and assessing the genome of both the starting and final product, (2) familiarity with GMP manufacturing, reagent validation, and supply chain management, (3) product delivery issues and the additional regulatory challenges, (4) the relationship between clinical trial design and preclinical studies, and (5) the market approval requirements, pathways, and partnerships needed.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Células-Tronco , Humanos , Linhagem Celular
9.
Geroscience ; 44(5): 2471-2490, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35996062

RESUMO

Caloric restriction (CR) is the leading non-pharmacological intervention to delay induced and spontaneous tumors in pre-clinical models. These effects of CR are largely attributed to canonical inhibition of pro-growth pathways. However, our recent data suggest that CR impairs primary tumor growth and cancer progression in the murine 4T1 model of triple negative breast cancer (TNBC), at least in part, through reduced frequency of the myeloid-derived suppressor cells (MDSC). In the present study, we sought to determine whether injection of excess MDSCs could block regression in 4T1 tumor growth and metastatic spread in BALB/cJ female mice undergoing daily CR. Our findings show that MDSC injection impeded CR-mediated protection against tumor growth without increasing lung metastatic burden. Overall, these results reveal that CR can slow cancer progression by affecting immune suppressive cells.Impact statement: Inoculation of MDSCs from donor mice effectively impedes the ability of calorie restriction to protect against primary tumor growth without impacting lung metastatic burden in recipient animals.


Assuntos
Células Supressoras Mieloides , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Camundongos , Animais , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Restrição Calórica , Modelos Animais de Doenças , Linhagem Celular Tumoral
10.
Insects ; 12(9)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34564245

RESUMO

Insects harbor a variety of maternally inherited bacterial symbionts. As such, variation in symbiont presence/absence, in the combinations of harbored symbionts, and in the genotypes of harbored symbiont species provide heritable genetic variation of potential use in the insects' adaptive repertoires. Understanding the natural importance of symbionts is challenging but studying their dynamics over time can help to elucidate the potential for such symbiont-driven insect adaptation. Toward this end, we studied the seasonal dynamics of six maternally transferred bacterial symbiont species in the multivoltine pea aphid (Acyrthosiphon pisum). Our sampling focused on six alfalfa fields in southeastern Pennsylvania, and spanned 14 timepoints within the 2012 growing season, in addition to two overwintering periods. To test and generate hypotheses on the natural relevance of these non-essential symbionts, we examined whether symbiont dynamics correlated with any of ten measured environmental variables from the 2012 growing season, including some of known importance in the lab. We found that five symbionts changed prevalence across one or both overwintering periods, and that the same five species underwent such frequency shifts across the 2012 growing season. Intriguingly, the frequencies of these dynamic symbionts showed robust correlations with a subset of our measured environmental variables. Several of these trends supported the natural relevance of lab-discovered symbiont roles, including anti-pathogen defense. For a seventh symbiont-Hamiltonella defensa-studied previously across the same study periods, we tested whether a reported correlation between prevalence and temperature stemmed not from thermally varying host-level fitness effects, but from selection on co-infecting symbionts or on aphid-encoded alleles associated with this bacterium. In general, such "hitchhiking" effects were not evident during times with strongly correlated Hamiltonella and temperature shifts. However, we did identify at least one time period in which Hamiltonella spread was likely driven by selection on a co-infecting symbiont-Rickettsiella viridis. Recognizing the broader potential for such hitchhiking, we explored selection on co-infecting symbionts as a possible driver behind the dynamics of the remaining six species. Out of twelve examined instances of symbiont dynamics unfolding across 2-week periods or overwintering spans, we found eight in which the focal symbiont underwent parallel frequency shifts under single infection and one or more co-infection contexts. This supported the idea that phenotypic variation created by the presence/absence of individual symbionts is a direct target for selection, and that symbiont effects can be robust under co-habitation with other symbionts. Contrastingly, in two cases, we found that selection may target phenotypes emerging from symbiont co-infections, with specific species combinations driving overall trends for the focal dynamic symbionts, without correlated change under single infection. Finally, in three cases-including the one described above for Hamiltonella-our data suggested that incidental co-infection with a (dis)favored symbiont could lead to large frequency shifts for "passenger" symbionts, conferring no apparent cost or benefit. Such hitchhiking has rarely been studied in heritable symbiont systems. We propose that it is more common than appreciated, given the widespread nature of maternally inherited bacteria, and the frequency of multi-species symbiotic communities across insects.

11.
Nat Commun ; 12(1): 6463, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34753921

RESUMO

Diet composition, calories, and fasting times contribute to the maintenance of health. However, the impact of very low-calorie intake (VLCI) achieved with either standard laboratory chow (SD) or a plant-based fasting mimicking diet (FMD) is not fully understood. Here, using middle-aged male mice we show that 5 months of short 4:10 VLCI cycles lead to decreases in both fat and lean mass, accompanied by improved physical performance and glucoregulation, and greater metabolic flexibility independent of diet composition. A long-lasting metabolomic reprograming in serum and liver is observed in mice on VLCI cycles with SD, but not FMD. Further, when challenged with an obesogenic diet, cycles of VLCI do not prevent diet-induced obesity nor do they elicit a long-lasting metabolic memory, despite achieving modest metabolic flexibility. Our results highlight the importance of diet composition in mediating the metabolic benefits of short cycles of VLCI.


Assuntos
Ingestão de Energia/fisiologia , Obesidade/metabolismo , Animais , Restrição Calórica , Masculino , Camundongos , Obesidade/genética
12.
Nat Commun ; 12(1): 6201, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34707136

RESUMO

Cancer incidence increases with age and is a leading cause of death. Caloric restriction (CR) confers benefits on health and survival and delays cancer. However, due to CR's stringency, dietary alternatives offering the same cancer protection have become increasingly attractive. Short cycles of a plant-based diet designed to mimic fasting (FMD) are protective against tumorigenesis without the chronic restriction of calories. Yet, it is unclear whether the fasting time, level of dietary restriction, or nutrient composition is the primary driver behind cancer protection. Using a breast cancer model in mice, we compare the potency of daily CR to that of periodic caloric cycling on FMD or an isocaloric standard laboratory chow against primary tumor growth and metastatic burden. Here, we report that daily CR provides greater protection against tumor growth and metastasis to the lung, which may be in part due to the unique immune signature observed with daily CR.


Assuntos
Restrição Calórica/métodos , Neoplasias Pulmonares/prevenção & controle , Neoplasias Mamárias Experimentais/dietoterapia , Animais , Linhagem Celular Tumoral , Jejum , Feminino , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Carga Tumoral , Microambiente Tumoral/imunologia
13.
Stem Cell Reports ; 16(6): 1398-1408, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34048692

RESUMO

The International Society for Stem Cell Research has updated its Guidelines for Stem Cell Research and Clinical Translation in order to address advances in stem cell science and other relevant fields, together with the associated ethical, social, and policy issues that have arisen since the last update in 2016. While growing to encompass the evolving science, clinical applications of stem cells, and the increasingly complex implications of stem cell research for society, the basic principles underlying the Guidelines remain unchanged, and they will continue to serve as the standard for the field and as a resource for scientists, regulators, funders, physicians, and members of the public, including patients. A summary of the key updates and issues is presented here.


Assuntos
Temas Bioéticos/normas , Políticas , Guias de Prática Clínica como Assunto , Sociedades Científicas/normas , Pesquisa com Células-Tronco/ética , Células-Tronco , Humanos , Sociedades Científicas/ética
14.
Cytotherapy ; 12(7): 853-6, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20942603

RESUMO

The last decade has seen a dramatic rise in the development of new cellular therapeutics in a wide range of indications. There have been acceptable safety profiles reported in early studies using blood-derived and adherent stem cell products, but also an inconsistent efficacy record. Further expansion has been hindered in part by a lack of capital (both private and public) and delayed entry into the cell therapy space by large healthcare and pharmaceutical companies, those members of the industry most reliably able to initiate and maintain advanced-phase clinical trials. With recognition that the International Society for Cellular Therapy (ISCT) is uniquely positioned to serve the global translational regenerative medicine research community as a network hub for scientific standards and policy, the ISCT commissioned the establishment of an Industry Task Force (ITF) to address current and future roles for industry. The objectives of the ITF were to gather information and prioritize efforts for a new Commercialization Committee (CC) and to construct innovative platforms that would foster constructive and synergistic collaborations between industry and ISCT. Recommendations and conclusions of the ITF included that the new CC: (1) foster new relationships with therapeutic and stem cell societies, (2) foster educational workshops and forums to cross-educate and standardize practices, (3) create industry subcommittees to address priority initiatives, with clear benchmarks and global implementation, and (4) establish a framework for a greater industry community within ISCT, opening doors for industry to share the new vision for commercialization of cell therapy, emphasizing the regenerative medicine space.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Ensaios Clínicos como Assunto , Indústria Farmacêutica , Comércio , Humanos , Guias de Prática Clínica como Assunto , Medicina Regenerativa , Sociedades Científicas , Pesquisa Translacional Biomédica
15.
Nat Biotechnol ; 24(11): 1392-401, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17053790

RESUMO

Of paramount importance for the development of cell therapies to treat diabetes is the production of sufficient numbers of pancreatic endocrine cells that function similarly to primary islets. We have developed a differentiation process that converts human embryonic stem (hES) cells to endocrine cells capable of synthesizing the pancreatic hormones insulin, glucagon, somatostatin, pancreatic polypeptide and ghrelin. This process mimics in vivo pancreatic organogenesis by directing cells through stages resembling definitive endoderm, gut-tube endoderm, pancreatic endoderm and endocrine precursor--en route to cells that express endocrine hormones. The hES cell-derived insulin-expressing cells have an insulin content approaching that of adult islets. Similar to fetal beta-cells, they release C-peptide in response to multiple secretory stimuli, but only minimally to glucose. Production of these hES cell-derived endocrine cells may represent a critical step in the development of a renewable source of cells for diabetes cell therapy.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/metabolismo , Células Enteroendócrinas/fisiologia , Ilhotas Pancreáticas/crescimento & desenvolvimento , Hormônios Pancreáticos/biossíntese , Hormônios Peptídicos/biossíntese , Células Cultivadas , Grelina , Humanos , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Pâncreas/citologia , Hormônios Pancreáticos/isolamento & purificação
16.
Nat Biotechnol ; 23(6): 699-708, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15940242

RESUMO

Human embryonic stem cells have been defined as self-renewing cells that can give rise to many types of cells of the body. How and whether these cells can be manipulated to replace cells in diseased tissues, used to screen drugs and toxins, or studied to better understand normal development, however, depends on knowing more about their fundamental properties. Many different human embryonic stem cell lines--which are pluripotent, proliferate indefinitely in vitro and maintain a normal, euploid karyotype over extended culture--have now been derived, but whether these cell lines are in fact equivalent remains unclear. It will therefore be important to define robust criteria for the assessment of both existing and newly derived cell lines and for the validation of new culture conditions.


Assuntos
Técnicas de Cultura de Células , Células-Tronco/fisiologia , Biomarcadores , Diferenciação Celular , Proliferação de Células , Análise Citogenética , Embrião de Mamíferos/citologia , Perfilação da Expressão Gênica , Humanos
17.
Stem Cell Reports ; 10(5): 1429-1431, 2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29742388

RESUMO

Stem cell-based clinical interventions are increasingly advancing through preclinical testing and approaching clinical trials. The complexity and diversity of these approaches, and the confusion created by unproven and untested stem cell-based "therapies," create a growing need for a more comprehensive review of these early-stage human trials to ensure they place the patients at minimal risk of adverse events but are also based on solid evidence of preclinical efficacy with a clear scientific rationale for that effect. To address this issue and supplement the independent review process, especially that of the ethics and institutional review boards who may not be experts in stem cell biology, the International Society for Stem Cell Research (ISSCR) has developed a set of practical questions to cover the major issues for which clear evidence-based answers need to be obtained before approving a stem cell-based trial.


Assuntos
Ensaios Clínicos como Assunto/ética , Comitês de Ética em Pesquisa , Transplante de Células-Tronco/ética , Células-Tronco/citologia , Humanos , Inquéritos e Questionários , Pesquisa Translacional Biomédica
18.
Transplantation ; 102(8): 1223-1229, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29781950

RESUMO

Beta cell replacement has the potential to restore euglycemia in patients with insulin-dependent diabetes. Although great progress has been made in establishing allogeneic islet transplantation from deceased donors as the standard of care for those with the most labile diabetes, it is also clear that the deceased donor organ supply cannot possibly treat all those who could benefit from restoration of a normal beta cell mass, especially if immunosuppression were not required. Against this background, the International Pancreas and Islet Transplant Association in collaboration with the Harvard Stem Cell Institute, the Juvenile Diabetes Research Foundation (JDRF), and the Helmsley Foundation held a 2-day Key Opinion Leaders Meeting in Boston in 2016 to bring together experts in generating and transplanting beta cells derived from stem cells. The following summary highlights current technology, recent significant breakthroughs, unmet needs and roadblocks to stem cell-derived beta cell therapies, with the aim of spurring future preclinical collaborative investigations and progress toward the clinical application of stem cell-derived beta cells.


Assuntos
Diabetes Mellitus Tipo 1/terapia , Células Secretoras de Insulina/citologia , Transplante de Células-Tronco/métodos , Animais , Boston , Diferenciação Celular , Congressos como Assunto , Edição de Genes , Humanos , Tolerância Imunológica , Células Secretoras de Insulina/imunologia , Transplante das Ilhotas Pancreáticas , Pâncreas/citologia , Transplante de Pâncreas/métodos , Células-Tronco Pluripotentes/citologia , Doadores de Tecidos
19.
Nat Biotechnol ; 22(3): 297-305, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14990951

RESUMO

Lineage-restricted progenitors of the central nervous system (CNS) are not readily expandable because their mitotic competence is limited. Here we used retroviral overexpression of human telomerase reverse transcriptase (hTERT) to immortalize progenitors from human fetal spinal cord. The hTERT-immortalized cells divided in basic fibroblast growth factor (bFGF) expressed high telomerase activity, and gave rise to phenotypically restricted subpopulations of either glia or neurons. The latter included a prototypic line, hSC11V-TERT, that gave rise only to neurons. These included both chx10(+) interneurons and Islet1(+)/Hb9(+)/ChAT(+) motor neurons; the latter were recognized by green fluorescent protein (GFP) driven by the Hb9 enhancer. The neurons were postmitotic and achieved electrophysiologic competence. Upon xenograft to both fetal rat brain and injured adult spinal cord, they matured as neurons and survived for 6 months, with no evident tumorigenesis. The cells have survived >168 doublings in vitro, with karyotypic normalcy and without replicative senescence. hTERT overexpression thus permits the generation of progenitor lines able to give rise to phenotypically restricted neurons.


Assuntos
Técnicas de Cultura de Células/métodos , Neurônios/citologia , Neurônios/fisiologia , Células-Tronco/citologia , Células-Tronco/fisiologia , Telomerase/metabolismo , Engenharia Tecidual/métodos , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Linhagem Celular , Sobrevivência Celular/fisiologia , Proteínas de Ligação a DNA , Melhoramento Genético/métodos , Humanos , Doenças do Sistema Nervoso/cirurgia , Plasticidade Neuronal/fisiologia , Proteínas dos Retroviridae/genética , Proteínas dos Retroviridae/metabolismo , Medula Espinal/citologia , Medula Espinal/embriologia , Medula Espinal/fisiologia , Transplante de Células-Tronco/métodos , Telomerase/genética
20.
Prog Brain Res ; 230: 151-163, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28552227

RESUMO

The development of pluripotent stem cell (PSC) therapies is rapidly advancing, and a number of PSC-derived cell products are currently being tested in clinical trials. The biological complexity of these therapies results in specific challenges in complying with regulatory guidelines. This includes the choice of starting material, reproducible and consistent manufacturing, and preclinical safety and efficacy assessment of the PSC-derived product. This review discusses current US cell therapy regulations and strategies for compliance with these regulations when developing PSC-derived products.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Indústria Farmacêutica/legislação & jurisprudência , Regulamentação Governamental , Células-Tronco Pluripotentes/citologia , United States Food and Drug Administration , Terapia Baseada em Transplante de Células e Tecidos/normas , Humanos , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA