RESUMO
Decapping is a crucial step in mRNA degradation in eucaryotes and requires the formation of a holoenzyme complex between the decapping enzyme DECAPPING 2 (DCP2) and the decapping enhancer DCP1. In Arabidopsis (Arabidopsis thaliana), DCP1-ASSOCIATED NYN ENDORIBONUCLEASE 1 (DNE1) is a direct protein partner of DCP1. The function of both DNE1 and decapping is necessary to maintain phyllotaxis, the regularity of organ emergence in the apex. In this study, we combined in vivo mRNA editing, RNA degradome sequencing, transcriptomics, and small RNA-omics to identify targets of DNE1 and study how DNE1 and DCP2 cooperate in controlling mRNA fate. Our data reveal that DNE1 mainly contacts and cleaves mRNAs in the coding sequence and has sequence cleavage preferences. DNE1 targets are also degraded through decapping, and both RNA degradation pathways influence the production of mRNA-derived small interfering RNAs. Finally, we detected mRNA features enriched in DNE1 targets including RNA G-quadruplexes and translated upstream open reading frames. Combining these four complementary high-throughput sequencing strategies greatly expands the range of DNE1 targets and allowed us to build a conceptual framework describing the influence of DNE1 and decapping on mRNA fate. These data will be crucial to unveil the specificity of DNE1 action and understand its importance for developmental patterning.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Endorribonucleases , Arabidopsis/genética , Arabidopsis/metabolismo , Endorribonucleases/metabolismo , Endorribonucleases/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma/genética , Estabilidade de RNA/genética , Capuzes de RNA/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismoRESUMO
Until recently, the general 5'-3' mRNA decay was placed in the cytosol after the mRNA was released from ribosomes. However, the discovery of an additional 5' to 3' pathway, the Co-Translational mRNA Decay (CTRD), changed this paradigm. Up to date, defining the real contribution of CTRD in the general mRNA turnover has been hardly possible as the enzyme involved in this pathway is also involved in cytosolic decay. Here we overcame this obstacle and created an Arabidopsis line specifically impaired for CTRD called XRN4ΔCTRD. Through a genome-wide analysis of mRNA decay rate in shoot and root, we tested the importance of CTRD in mRNA turnover. First, we observed that mRNAs tend to be more stable in root than in shoot. Next, using XRN4ΔCTRD line, we demonstrated that CTRD is a major determinant in mRNA turnover. In shoot, the absence of CTRD leads to the stabilization of thousands of transcripts while in root its absence is highly compensated resulting in faster decay rates. We demonstrated that this faster decay rate is partially due to the XRN4-dependent cytosolic decay. Finally, we correlated this organ-specific effect with XRN4ΔCTRD line phenotypes revealing a crucial role of CTRD in mRNA homeostasis and proper organ development.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Raízes de Plantas , Brotos de Planta , Estabilidade de RNA , RNA Mensageiro , Arabidopsis/genética , Arabidopsis/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Estabilidade de RNA/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brotos de Planta/metabolismo , Brotos de Planta/genética , Genoma de Planta , Exorribonucleases/metabolismo , Exorribonucleases/genética , Biossíntese de Proteínas , RNA de Plantas/metabolismo , RNA de Plantas/genética , Citosol/metabolismoRESUMO
Arginine/R methylation (R-met) of proteins is a widespread post-translational modification (PTM), deposited by a family of protein arginine/R methyl transferase enzymes (PRMT). Regulations by R-met are involved in key biological processes deeply studied in metazoan. Among those, post-transcriptional gene silencing (PTGS) can be regulated by R-met in animals and in plants. It mainly contributes to safeguard processes as protection of genome integrity in germlines through the regulation of piRNA pathway in metazoan, or response to bacterial infection through the control of AGO2 in plants. So far, only PRMT5 has been identified as the AGO/PIWI R-met writer in higher eukaryotes. We uncovered that AGO1, the main PTGS effector regulating plant development, contains unique R-met features among the AGO/PIWI superfamily, and outstanding in eukaryotes. Indeed, AGO1 contains both symmetric (sDMA) and asymmetric (aDMA) R-dimethylations and is dually targeted by PRMT5 and by another type I PRMT in Arabidopsis thaliana. We showed also that loss of sDMA didn't compromise AtAGO1 subcellular trafficking in planta. Interestingly, we underscored that AtPRMT5 specifically promotes the loading of phasiRNA in AtAGO1. All our observations bring to consider this dual regulation of AtAGO1 in plant development and response to environment, and pinpoint the complexity of AGO1 post-translational regulation.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Argonautas , Proteína-Arginina N-Metiltransferases , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arginina/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Eucariotos/metabolismo , Plantas/metabolismo , Interferência de RNA , Proteína-Arginina N-Metiltransferases/metabolismoRESUMO
Increasing evidence suggests that posttranscriptional regulation is a key player in the transition between mature pollen and the progamic phase (from pollination to fertilization). Nonetheless, the actors in this messenger RNA (mRNA)-based gene expression reprogramming are poorly understood. We demonstrate that the evolutionarily conserved RNA-binding protein LARP6C is necessary for the transition from dry pollen to pollen tubes and the guided growth of pollen tubes towards the ovule in Arabidopsis thaliana. In dry pollen, LARP6C binds to transcripts encoding proteins that function in lipid synthesis and homeostasis, vesicular trafficking, and polarized cell growth. LARP6C also forms cytoplasmic granules that contain the poly(A) binding protein and possibly represent storage sites for translationally silent mRNAs. In pollen tubes, the loss of LARP6C negatively affects the quantities and distribution of storage lipids, as well as vesicular trafficking. In Nicotiana benthamiana leaf cells and in planta, analysis of reporter mRNAs designed from the LARP6C target MGD2 provided evidence that LARP6C can shift from a repressor to an activator of translation when the pollen grain enters the progamic phase. We propose that LARP6C orchestrates the timely posttranscriptional regulation of a subset of mRNAs in pollen during the transition from the quiescent to active state and along the progamic phase to promote male fertilization in plants.
Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Tubo Polínico/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Regiões 5' não Traduzidas , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Sítios de Ligação , Grânulos Citoplasmáticos/genética , Grânulos Citoplasmáticos/metabolismo , Regulação da Expressão Gênica de Plantas , Lipídeos/biossíntese , Lipídeos/genética , Plantas Geneticamente Modificadas , Tubo Polínico/citologia , Tubo Polínico/crescimento & desenvolvimento , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , Nicotiana/genéticaRESUMO
In plant cells, a large pool of iron (Fe) is contained in the nucleolus, as well as in chloroplasts and mitochondria. A central determinant for intracellular distribution of Fe is nicotianamine (NA) generated by NICOTIANAMINE SYNTHASE (NAS). Here, we used Arabidopsis thaliana plants with disrupted NAS genes to study the accumulation of nucleolar iron and understand its role in nucleolar functions and more specifically in rRNA gene expression. We found that nas124 triple mutant plants, which contained lower quantities of the iron ligand NA, also contained less iron in the nucleolus. This was concurrent with the expression of normally silenced rRNA genes from nucleolar organizer regions 2 (NOR2). Notably, in nas234 triple mutant plants, which also contained lower quantities of NA, nucleolar iron and rDNA expression were not affected. In contrast, in both nas124 and nas234, specific RNA modifications were differentially regulated in a genotype dependent manner. Taken together, our results highlight the impact of specific NAS activities in RNA gene expression. We discuss the interplay between NA and nucleolar iron with rDNA functional organization and RNA methylation.
Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , DNA Ribossômico/metabolismo , Metilação , Ferro/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismoRESUMO
Transposable elements (TEs) are a rich source of genetic variability. Among TEs, miniature inverted-repeat TEs (MITEs) are of particular interest as they are present in high copy numbers in plant genomes and are closely associated with genes. MITEs are deletion derivatives of class II transposons, and can be mobilized by the transposases encoded by the latter through a typical cut-and-paste mechanism. However, MITEs are typically present at much higher copy numbers than class II transposons. We present here an analysis of 103 109 transposon insertion polymorphisms (TIPs) in 738 Oryza sativa genomes representing the main rice population groups. We show that an important fraction of MITE insertions has been fixed in rice concomitantly with its domestication. However, another fraction of MITE insertions is present at low frequencies. We performed MITE TIP-genome-wide association studies (TIP-GWAS) to study the impact of these elements on agronomically important traits and found that these elements uncover more trait associations than single nucleotide polymorphisms (SNPs) on important phenotypes such as grain width. Finally, using SNP-GWAS and TIP-GWAS we provide evidence of the replicative amplification of MITEs.
Assuntos
Elementos de DNA Transponíveis/genética , Sequências Repetidas Invertidas/genética , Oryza/genética , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Oryza/fisiologia , Fenótipo , Polimorfismo de Nucleotídeo ÚnicoRESUMO
RNA turnover is a general process that maintains appropriate mRNA abundance at the posttranscriptional level. Although long thought to be antagonistic to translation, discovery of the 5' to 3' cotranslational mRNA decay pathway demonstrated that both processes are intertwined. Cotranslational mRNA decay globally shapes the transcriptome in different organisms and in response to stress; however, the dynamics of this process during plant development is poorly understood. In this study, we used a multiomics approach to reveal the global landscape of cotranslational mRNA decay during Arabidopsis (Arabidopsis thaliana) seedling development. We demonstrated that cotranslational mRNA decay is regulated by developmental cues. Using the EXORIBONUCLEASE4 (XRN4) loss-of-function mutant, we showed that XRN4 poly(A+) mRNA targets are largely subject to cotranslational decay during plant development. As cotranslational mRNA decay is interconnected with translation, we also assessed its role in translation efficiency. We discovered that clusters of transcripts were specifically subjected to cotranslational decay in a developmental-dependent manner to modulate their translation efficiency. Our approach allowed the determination of a cotranslational decay efficiency that could be an alternative to other methods to assess transcript translation efficiency. Thus, our results demonstrate the prevalence of cotranslational mRNA decay in plant development and its role in translational control.
Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Biossíntese de Proteínas/fisiologia , Estabilidade de RNA/fisiologia , RNA de Plantas/fisiologia , Variação Genética , Genótipo , Mutação , Estabilidade de RNA/genética , Plântula/genética , Plântula/crescimento & desenvolvimentoRESUMO
Transposable elements (TEs) are ubiquitous in plants and are the primary genomic component of the majority of taxa. Knowledge of their impact on the structure, function and evolution of plant genomes is therefore a priority in the field of genomics. Rice, as one of the most prevalent crops for food security worldwide, has been subjected to intense research efforts over recent decades. Consequently, a considerable amount of genomic resources has been generated and made freely available to the scientific community. These can be exploited both to improve our understanding of some basic aspects of genome biology of this species and to develop new concepts for crop improvement. In this review, we describe the current knowledge on how TEs have shaped rice chromosomes and propose a new strategy based on a genome-wide association study (GWAS) to address the important question of their functional impact on this crop.
Assuntos
Elementos de DNA Transponíveis , Oryza , Elementos de DNA Transponíveis/genética , Evolução Molecular , Genoma de Planta/genética , Estudo de Associação Genômica Ampla , Genômica , Oryza/genéticaRESUMO
Retrotransposons are mobile genetic elements abundant in plant and animal genomes. While efficiently silenced by the epigenetic machinery, they can be reactivated upon stress or during development. Their level of transcription not reflecting their transposition ability, it is thus difficult to evaluate their contribution to the active mobilome. Here we applied a simple methodology based on the high throughput sequencing of extrachromosomal circular DNA (eccDNA) forms of active retrotransposons to characterize the repertoire of mobile retrotransposons in plants. This method successfully identified known active retrotransposons in both Arabidopsis and rice material where the epigenome is destabilized. When applying mobilome-seq to developmental stages in wild type rice, we identified PopRice as a highly active retrotransposon producing eccDNA forms in the wild type endosperm. The mobilome-seq strategy opens new routes for the characterization of a yet unexplored fraction of plant genomes.
Assuntos
DNA Circular/genética , Sequências Repetitivas Dispersas/genética , Plantas/genética , Retroelementos/genética , Arabidopsis/genética , DNA Circular/química , DNA de Plantas/química , DNA de Plantas/genética , Endosperma/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala , Modelos Genéticos , Mutagênese Insercional , Oryza/genética , Filogenia , Folhas de Planta/genética , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
Heat shock (HS) is known to have a profound impact on gene expression at different levels, such as inhibition of protein synthesis, in which HS blocks translation initiation and induces the sequestration of mRNAs into stress granules (SGs) or P-bodies for storage and/or decay. SGs prevent the degradation of the stored mRNAs, which can be reengaged into translation in the recovery period. However, little is known on the mRNAs stored during the stress, how these mRNAs are released from SGs afterward, and what the functional importance is of this process. In this work, we report that Arabidopsis HEAT SHOCK PROTEIN101 (HSP101) knockout mutant (hsp101) presented a defect in translation recovery and SG dissociation after HS Using RNA sequencing and RNA immunoprecipitation approaches, we show that mRNAs encoding ribosomal proteins (RPs) were preferentially stored during HS and that these mRNAs were released and translated in an HSP101-dependent manner during recovery. By 15N incorporation and polysome profile analyses, we observed that these released mRNAs contributed to the production of new ribosomes to enhance translation. We propose that, after HS, HSP101 is required for the efficient release of RP mRNAs from SGs resulting in a rapid restoration of the translation machinery by producing new RPs.
Assuntos
Resposta ao Choque Térmico/genética , Proteínas de Plantas/metabolismo , Proteínas Ribossômicas/genética , Fatores de Transcrição/metabolismo , Grânulos Citoplasmáticos/metabolismo , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Mutação/genética , Polirribossomos/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Transcrição GênicaRESUMO
BACKGROUND: Transposables elements (TEs) contribute to both structural and functional dynamics of most eukaryotic genomes. Because of their propensity to densely populate plant and animal genomes, the precise estimation of the impact of transposition on genomic diversity has been considered as one of the main challenges of today's genomics. The recent development of NGS (next generation sequencing) technologies has open new perspectives in population genomics by providing new methods for high throughput detection of Transposable Elements-associated Structural Variants (TEASV). However, these have relied on Illumina platform that generates short reads (up to 350 nucleotides). This limitation in size of sequence reads can cause high false discovery rate (FDR) and therefore limit the power of detection of TEASVs, especially in the case of large, complex genomes. The newest sequencing technologies, such as Oxford Nanopore Technologies (ONT) can generate kilobases-long reads thus representing a promising tool for TEASV detection in plant and animals. RESULTS: We present the results of a pilot experiment for TEASV detection on the model plant species Arabidopsis thaliana using ONT sequencing and show that it can be used efficiently to detect TE movements. We generated a ~0.8X genome coverage of a met1-derived epigenetic recombinant inbred line (epiRIL) using a MinIon device with R7 chemistry. We were able to detect nine new copies of the LTR-retrotransposon Evadé (EVD). We also evidenced the activity of the DNA transposon CACTA, CAC1. CONCLUSIONS: Even at a low sequence coverage (0.8X), ONT sequencing allowed us to reliably detect several TE insertions in Arabidopsis thaliana genome. The long read length allowed a precise and un-ambiguous mapping of the structural variations caused by the activity of TEs. This suggests that the trade-off between read length and genome coverage for TEASV detection may be in favor of the former. Should the technology be further improved both in terms of lower error rate and operation costs, it could be efficiently used in diversity studies at population level.
Assuntos
Arabidopsis/genética , Elementos de DNA Transponíveis/genética , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Retroelementos/genética , Sequências Repetidas Terminais/genéticaRESUMO
Vertical, transgenerational transmission of genetic material occurs through reproduction of living organisms. In addition to vertical inheritance, horizontal gene transfer between reproductively isolated species has recently been shown to be an important, if not dominant, mechanism in the evolution of prokaryotic genomes. In contrast, only a few horizontal transfer (HT) events have been characterized so far in eukaryotes and mainly concern transposable elements (TEs). Whether these are frequent and have a significant impact on genome evolution remains largely unknown. We performed a computational search for highly conserved LTR retrotransposons among 40 sequenced eukaryotic genomes representing the major plant families. We found that 26 genomes (65%) harbor at least one case of horizontal TE transfer (HTT). These transfers concern species as distantly related as palm and grapevine, tomato and bean, or poplar and peach. In total, we identified 32 cases of HTTs, which could translate into more than 2 million among the 13,551 monocot and dicot genera. Moreover, we show that these TEs have remained functional after their transfer, occasionally causing a transpositional burst. This suggests that plants can frequently exchange genetic material through horizontal transfers and that this mechanism may be important in TE-driven genome evolution.
Assuntos
Elementos de DNA Transponíveis/genética , Transferência Genética Horizontal , Genoma de Planta , Magnoliopsida/genética , Retroelementos/genética , Especificidade da EspécieRESUMO
The reprogramming of gene expression in heat stress is a key determinant to organism survival. Gene expression is downregulated through translation initiation inhibition and release of free mRNPs that are rapidly degraded or stored. In mammals, heat also triggers 5'-ribosome pausing preferentially on transcripts coding for HSC/HSP70 chaperone targets, but the impact of such phenomenon on mRNA fate remains unknown. Here, we provide evidence that, in Arabidopsis thaliana, heat provokes 5'-ribosome pausing leading to the XRN4-mediated 5'-directed decay of translating mRNAs. We also show that hindering HSC/HSP70 activity at 20°C recapitulates heat effects by inducing ribosome pausing and co-translational mRNA turnover. Strikingly, co-translational decay targets encode proteins with high HSC/HSP70 binding scores and hydrophobic N-termini, two characteristics that were previously observed for transcripts most prone to pausing in animals. This work suggests for the first time that stress-induced variation of translation elongation rate is an evolutionarily conserved process leading to the polysomal degradation of thousands of 'non-aberrant' mRNAs.
Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Temperatura Alta , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Estresse Fisiológico/genética , Arabidopsis/metabolismo , Regulação para Baixo , Exorribonucleases/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Plantas/metabolismo , Polirribossomos/metabolismo , Estabilidade de RNARESUMO
BACKGROUND: Insects subsisting on nutritionally unbalanced diets have evolved long-term mutualistic relationships with intracellular symbiotic bacteria (endosymbionts). The endosymbiont population load undergoes changes along with insect development. In the cereal weevil Sitophilus oryzae, the midgut endosymbionts Sodalis pierantonius drastically multiply following adult metamorphosis and rapidly decline until total elimination when the insect achieves its cuticle synthesis. Whilst symbiont load was shown to timely meet insect metabolic needs, little is known about the host molecular and immune processes underlying this dynamics. METHODS: We performed RNA sequencing analysis on weevil midguts at three representative phases of the endosymbiont dynamics (i.e. increase, climax and decrease). To screen genes which transcriptional changes are specifically related to symbiont dynamics and not to the intrinsic development of the midgut, we further have monitored by RT-qPCR sixteen gene transcript levels in symbiotic and artificially non-symbiotic (aposymbiotic) weevils. We also localized the endosymbionts during the elimination process by fluorescence microscopy. RESULTS: Functional analysis of the host differentially expressed genes by RNA sequencing showed that the main transcriptional changes occur during endosymbiont growth phase and affect cell proliferation, apoptosis, autophagy, phagocytosis, and metabolism of fatty acids and nucleic acids. We also showed that symbiont dynamics alters the expression of several genes involved in insect development. Our results strengthened the implication of apoptosis and autophagy processes in symbiont elimination and recycling. Remarkably, apart from the coleoptericin A that is known to target endosymbionts and controls their division and location, no gene coding antimicrobial peptide was upregulated during the symbiont growth and elimination phases. CONCLUSION: We show that endosymbiont dynamics parallels numerous transcriptional changes in weevil developing adults and affects several biological processes, including metabolism and development. It also triggers cell apoptosis, autophagy and gut epithelial cell swelling and delamination. Strikingly, immunity is repressed during the whole process, presumably avoiding tissue inflammation and allowing insects to optimize nutrient recovery from recycled endosymbiont.
Assuntos
Proteínas de Insetos/genética , Simbiose/genética , Gorgulhos/genética , Gorgulhos/imunologia , Animais , Apoptose/genética , Autofagia/genética , Bactérias/genética , Sequência de Bases , Sistema Digestório/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Insetos/biossíntese , Larva/crescimento & desenvolvimento , Larva/imunologia , Larva/microbiologia , Gorgulhos/crescimento & desenvolvimento , Gorgulhos/microbiologiaRESUMO
Deciphering the mechanism of secondary cell wall/SCW formation in plants is key to understanding their development and the molecular basis of biomass recalcitrance. Although transcriptional regulation is essential for SCW formation, little is known about the implication of post-transcriptional mechanisms in this process. Here we report that two bonafide RNA-binding proteins homologous to the animal translational regulator Musashi, MSIL2 and MSIL4, function redundantly to control SCW formation in Arabidopsis. MSIL2/4 interactomes are similar and enriched in proteins involved in mRNA binding and translational regulation. MSIL2/4 mutations alter SCW formation in the fibers, leading to a reduction in lignin deposition, and an increase of 4-O-glucuronoxylan methylation. In accordance, quantitative proteomics of stems reveal an overaccumulation of glucuronoxylan biosynthetic machinery, including GXM3, in the msil2/4 mutant stem. We showed that MSIL4 immunoprecipitates GXM mRNAs, suggesting a novel aspect of SCW regulation, linking post-transcriptional control to the regulation of SCW biosynthesis genes.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Lignina , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Processamento de Proteína Pós-Traducional , Parede Celular/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
The current agriculture main challenge is to maintain food production while facing multiple threats such as increasing world population, temperature increase, lack of agrochemicals due to health issues and uprising of weeds resistant to herbicides. Developing novel, alternative, and safe methods is hence of paramount importance. Here, we show that complementary peptides (cPEPs) from any gene can be designed to target specifically plant coding genes. External application of synthetic peptides increases the abundance of the targeted protein, leading to related phenotypes. Moreover, we provide evidence that cPEPs can be powerful tools in agronomy to improve plant traits, such as growth, resistance to pathogen or heat stress, without the needs of genetic approaches. Finally, by combining their activity they can also be used to reduce weed growth.
Assuntos
Agroquímicos , Controle de Plantas Daninhas , Agroquímicos/farmacologia , Resistência a Herbicidas/genética , Plantas Daninhas/genética , Peptídeos , Produtos Agrícolas/genéticaRESUMO
Delphinium montanum DC. 1815, is an endangered larkspur endemic to the Eastern Pyrenees. For biogeographic and conservation purpose, a hybrid assembly approach based on long- and short-read genomic data allowed us to successfully assemble whole plastid genome of Delphinium montanum. The complete plastome is 154,185 bp in length, consisting of a pair of inverted repeats (IRs) of 26,559 bp, a large single-copy (LSC) region and a small single-copy region (SSC) of 84,746 and 16,320 bp, respectively. It was found to contain 136 genes, including 84 protein-coding genes, 44 trRNA genes and 8 rRNA genes. The overall GC content of the plastid genome is 38.3%. Phylogenetic inference supports the polyphyly of the Delphinium genus.
RESUMO
Heat stress (HS) induces a cellular response leading to profound changes in gene expression. Here, we show that human YTHDC1, a reader of N6-methyladenosine (m6A) RNA modification, mostly associates to the chromatin fraction and that HS induces a redistribution of YTHDC1 across the genome, including to heat-induced heat shock protein (HSP) genes. YTHDC1 binding to m6A-modified HSP transcripts co-transcriptionally promotes expression of HSPs. In parallel, hundreds of the genes enriched in YTHDC1 during HS have their transcripts undergoing YTHDC1- and m6A-dependent intron retention. Later, YTHDC1 concentrates within nuclear stress bodies (nSBs) where it binds to m6A-modified SATIII non-coding RNAs, produced in an HSF1-dependent manner upon HS. These findings reveal that YTHDC1 plays a central role in a chromatin-associated m6A-based reprogramming of gene expression during HS. Furthermore, they support the model where the subsequent and temporary sequestration of YTHDC1 within nSBs calibrates the timing of this YTHDC1-dependent gene expression reprogramming.
Assuntos
Cromatina , Resposta ao Choque Térmico , Humanos , Resposta ao Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Expressão Gênica , Fatores de Processamento de RNA/metabolismo , Proteínas do Tecido Nervoso/metabolismoRESUMO
The recent development of high-throughput technologies based on RNA sequencing has allowed a better description of the role of post-transcriptional regulation in gene expression. In particular, the development of degradome approaches based on the capture of 5'monophosphate decay intermediates allows the discovery of a new decay pathway called co-translational mRNA decay. Thanks to these approaches, ribosome dynamics could now be revealed by analysis of 5'P reads accumulation. However, library preparation could be difficult to set-up for non-specialists. Here, we present a fast and efficient 5'P degradome library preparation for Arabidopsis samples. Our protocol was designed without commercial kit and gel purification and can be easily done in one working day. We demonstrated the robustness and the reproducibility of our protocol. Finally, we present the bioinformatic reads-outs necessary to assess library quality control.
RESUMO
In plants, RNA-directed DNA methylation (RdDM) is a silencing mechanism relying on the production of 24-nt small interfering RNAs (siRNAs) by RNA POLYMERASE IV (Pol IV) to trigger methylation and inactivation of transposable elements (TEs). We present the construction and characterization of osnrpd1, a knock-down RNA interference line of OsNRPD1 gene that encodes the largest subunit of Pol IV in rice (Oryza sativa ssp japonica cv Nipponbare). We show that osnrpd1 displays a lower accumulation of OsNRPD1 transcripts, associated with an overall reduction of 24-nt siRNAs and DNA methylation level in all three contexts, CG, CHG and CHH. We uncovered new insertions of known active TEs, the LTR retrotransposons Tos17 and Lullaby and the long interspersed nuclear element-type retrotransposon Karma. However, we did not observe any clear developmental phenotype, contrary to what was expected for a mutant severely affected in RdDM. In addition, despite the presence of many putatively functional TEs in the rice genome, we found no evidence of in planta global reactivation of transposition. This knock-down of OsNRPD1 likely led to a weakly affected line, with no effect on development and a limited effect on transposition. We discuss the possibility that a knock-out mutation of OsNRPD1 would cause sterility in rice. This article is part of a discussion meeting issue 'Crossroads between transposons and gene regulation'.