Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nature ; 630(8016): 401-411, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811727

RESUMO

Apes possess two sex chromosomes-the male-specific Y chromosome and the X chromosome, which is present in both males and females. The Y chromosome is crucial for male reproduction, with deletions being linked to infertility1. The X chromosome is vital for reproduction and cognition2. Variation in mating patterns and brain function among apes suggests corresponding differences in their sex chromosomes. However, owing to their repetitive nature and incomplete reference assemblies, ape sex chromosomes have been challenging to study. Here, using the methodology developed for the telomere-to-telomere (T2T) human genome, we produced gapless assemblies of the X and Y chromosomes for five great apes (bonobo (Pan paniscus), chimpanzee (Pan troglodytes), western lowland gorilla (Gorilla gorilla gorilla), Bornean orangutan (Pongo pygmaeus) and Sumatran orangutan (Pongo abelii)) and a lesser ape (the siamang gibbon (Symphalangus syndactylus)), and untangled the intricacies of their evolution. Compared with the X chromosomes, the ape Y chromosomes vary greatly in size and have low alignability and high levels of structural rearrangements-owing to the accumulation of lineage-specific ampliconic regions, palindromes, transposable elements and satellites. Many Y chromosome genes expand in multi-copy families and some evolve under purifying selection. Thus, the Y chromosome exhibits dynamic evolution, whereas the X chromosome is more stable. Mapping short-read sequencing data to these assemblies revealed diversity and selection patterns on sex chromosomes of more than 100 individual great apes. These reference assemblies are expected to inform human evolution and conservation genetics of non-human apes, all of which are endangered species.


Assuntos
Hominidae , Cromossomo X , Cromossomo Y , Animais , Feminino , Masculino , Gorilla gorilla/genética , Hominidae/genética , Hominidae/classificação , Hylobatidae/genética , Pan paniscus/genética , Pan troglodytes/genética , Filogenia , Pongo abelii/genética , Pongo pygmaeus/genética , Telômero/genética , Cromossomo X/genética , Cromossomo Y/genética , Evolução Molecular , Variações do Número de Cópias de DNA/genética , Humanos , Espécies em Perigo de Extinção , Padrões de Referência
2.
Genome Res ; 31(9): 1629-1637, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34426515

RESUMO

The X Chromosome plays an important role in human development and disease. However, functional genomic and disease association studies of X genes greatly lag behind autosomal gene studies, in part owing to the unique biology of X-Chromosome inactivation (XCI). Because of XCI, most genes are only expressed from one allele. Yet, ∼30% of X genes "escape" XCI and are transcribed from both alleles, many only in a proportion of the population. Such interindividual differences are likely to be disease relevant, particularly for sex-biased disorders. To understand the functional biology for X-linked genes, we developed X-Chromosome inactivation for RNA-seq (XCIR), a novel approach to identify escape genes using bulk RNA-seq data. Our method, available as an R package, is more powerful than alternative approaches and is computationally efficient to handle large population-scale data sets. Using annotated XCI states, we examined the contribution of X-linked genes to the disease heritability in the United Kingdom Biobank data set. We show that escape and variable escape genes explain the largest proportion of X heritability, which is in large part attributable to X genes with Y homology. Finally, we investigated the role of each XCI state in sex-biased diseases and found that although XY homologous gene pairs have a larger overall effect size, enrichment for variable escape genes is significantly increased in female-biased diseases. Our results, for the first time, quantitate the importance of variable escape genes for the etiology of sex-biased disease, and our pipeline allows analysis of larger data sets for a broad range of phenotypes.


Assuntos
Genes Ligados ao Cromossomo X , Inativação do Cromossomo X , Alelos , Animais , Feminino , Genômica , Cromossomo X/genética
4.
PLoS Genet ; 9(11): e1003952, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24278033

RESUMO

In mammalian females, genes on one X are largely silenced by X-chromosome inactivation (XCI), although some "escape" XCI and are expressed from both Xs. Escapees can closely juxtapose X-inactivated genes and provide a tractable model for assessing boundary function at epigenetically regulated loci. To delimit sequences at an XCI boundary, we examined female mouse embryonic stem cells carrying X-linked BAC transgenes derived from an endogenous escape locus. Previously we determined that large BACs carrying escapee Kdm5c and flanking X-inactivated transcripts are properly regulated. Here we identify two lines with truncated BACs that partially and completely delete the distal Kdm5c XCI boundary. This boundary is not required for escape, since despite integrating into regions that are normally X inactivated, transgenic Kdm5c escapes XCI, as determined by RNA FISH and by structurally adopting an active conformation that facilitates long-range preferential association with other escapees. Yet, XCI regulation is disrupted in the transgene fully lacking the distal boundary; integration site genes up to 350 kb downstream of the transgene now inappropriately escape XCI. Altogether, these results reveal two genetically separable XCI regulatory activities at Kdm5c. XCI escape is driven by a dominant element(s) retained in the shortest transgene that therefore lies within or upstream of the Kdm5c locus. Additionally, the distal XCI boundary normally plays an essential role in preventing nearby genes from escaping XCI.


Assuntos
Metilação de DNA/genética , Oxirredutases N-Desmetilantes/genética , Inativação do Cromossomo X/genética , Cromossomo X/genética , Animais , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , Histona Desmetilases , Hibridização in Situ Fluorescente , Camundongos , RNA Longo não Codificante/genética , Transgenes
5.
Nat Commun ; 15(1): 4260, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769300

RESUMO

Transcriptome-wide association study (TWAS) is a popular approach to dissect the functional consequence of disease associated non-coding variants. Most existing TWAS use bulk tissues and may not have the resolution to reveal cell-type specific target genes. Single-cell expression quantitative trait loci (sc-eQTL) datasets are emerging. The largest bulk- and sc-eQTL datasets are most conveniently available as summary statistics, but have not been broadly utilized in TWAS. Here, we present a new method EXPRESSO (EXpression PREdiction with Summary Statistics Only), to analyze sc-eQTL summary statistics, which also integrates 3D genomic data and epigenomic annotation to prioritize causal variants. EXPRESSO substantially improves existing methods. We apply EXPRESSO to analyze multi-ancestry GWAS datasets for 14 autoimmune diseases. EXPRESSO uniquely identifies 958 novel gene x trait associations, which is 26% more than the second-best method. Among them, 492 are unique to cell type level analysis and missed by TWAS using whole blood. We also develop a cell type aware drug repurposing pipeline, which leverages EXPRESSO results to identify drug compounds that can reverse disease gene expressions in relevant cell types. Our results point to multiple drugs with therapeutic potentials, including metformin for type 1 diabetes, and vitamin K for ulcerative colitis.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Análise de Célula Única , Humanos , Análise de Célula Única/métodos , Estudo de Associação Genômica Ampla/métodos , Predisposição Genética para Doença/genética , Transcriptoma/genética , Doenças Autoimunes/genética , Polimorfismo de Nucleotídeo Único , Herança Multifatorial/genética , Perfilação da Expressão Gênica/métodos
6.
Nat Commun ; 15(1): 5357, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918381

RESUMO

Large national-level electronic health record (EHR) datasets offer new opportunities for disentangling the role of genes and environment through deep phenotype information and approximate pedigree structures. Here we use the approximate geographical locations of patients as a proxy for spatially correlated community-level environmental risk factors. We develop a spatial mixed linear effect (SMILE) model that incorporates both genetics and environmental contribution. We extract EHR and geographical locations from 257,620 nuclear families and compile 1083 disease outcome measurements from the MarketScan dataset. We augment the EHR with publicly available environmental data, including levels of particulate matter 2.5 (PM2.5), nitrogen dioxide (NO2), climate, and sociodemographic data. We refine the estimates of genetic heritability and quantify community-level environmental contributions. We also use wind speed and direction as instrumental variables to assess the causal effects of air pollution. In total, we find PM2.5 or NO2 have statistically significant causal effects on 135 diseases, including respiratory, musculoskeletal, digestive, metabolic, and sleep disorders, where PM2.5 and NO2 tend to affect biologically distinct disease categories. These analyses showcase several robust strategies for jointly modeling genetic and environmental effects on disease risk using large EHR datasets and will benefit upcoming biobank studies in the era of precision medicine.


Assuntos
Poluição do Ar , Dióxido de Nitrogênio , Material Particulado , Humanos , Poluição do Ar/efeitos adversos , Material Particulado/efeitos adversos , Dióxido de Nitrogênio/efeitos adversos , Dióxido de Nitrogênio/análise , Fatores de Risco , Exposição Ambiental/efeitos adversos , Masculino , Feminino , Registros Eletrônicos de Saúde , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Predisposição Genética para Doença , Interação Gene-Ambiente , Pessoa de Meia-Idade , Adulto
7.
bioRxiv ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39131277

RESUMO

We present haplotype-resolved reference genomes and comparative analyses of six ape species, namely: chimpanzee, bonobo, gorilla, Bornean orangutan, Sumatran orangutan, and siamang. We achieve chromosome-level contiguity with unparalleled sequence accuracy (<1 error in 500,000 base pairs), completely sequencing 215 gapless chromosomes telomere-to-telomere. We resolve challenging regions, such as the major histocompatibility complex and immunoglobulin loci, providing more in-depth evolutionary insights. Comparative analyses, including human, allow us to investigate the evolution and diversity of regions previously uncharacterized or incompletely studied without bias from mapping to the human reference. This includes newly minted gene families within lineage-specific segmental duplications, centromeric DNA, acrocentric chromosomes, and subterminal heterochromatin. This resource should serve as a definitive baseline for all future evolutionary studies of humans and our closest living ape relatives.

8.
Hum Mol Genet ; 20(11): 2103-15, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21372149

RESUMO

Rett syndrome (RTT) is a neurodevelopmental autism spectrum disorder that affects girls due primarily to mutations in the gene encoding methyl-CpG binding protein 2 (MECP2). The majority of RTT patients carry missense and nonsense mutations leading to a hypomorphic MECP2, while null mutations leading to the complete absence of a functional protein are rare. MECP2 is an X-linked gene subject to random X-chromosome inactivation resulting in mosaic expression of mutant MECP2. The lack of human brain tissue motivates the need for alternative human cellular models to study RTT. Here we report the characterization of a MECP2 mutation in a classic female RTT patient involving rearrangements that remove exons 3 and 4 creating a functionally null mutation. To generate human neuron models of RTT, we isolated human induced pluripotent stem (hiPS) cells from RTT patient fibroblasts. RTT-hiPS cells retained the MECP2 mutation, are pluripotent and fully reprogrammed, and retained an inactive X-chromosome in a nonrandom pattern. Taking advantage of the latter characteristic, we obtained a pair of isogenic wild-type and mutant MECP2 expressing RTT-hiPS cell lines that retained this MECP2 expression pattern upon differentiation into neurons. Phenotypic analysis of mutant RTT-hiPS cell-derived neurons demonstrated a reduction in soma size compared with the isogenic control RTT-hiPS cell-derived neurons from the same RTT patient. Analysis of isogenic control and mutant hiPS cell-derived neurons represents a promising source for understanding the pathogenesis of RTT and the role of MECP2 in human neurons.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Neurônios/patologia , Síndrome de Rett/genética , Inativação do Cromossomo X , Encéfalo/citologia , Encéfalo/metabolismo , Diferenciação Celular , Linhagem Celular , Mapeamento Cromossômico , Cromossomos Humanos X/genética , Impressões Digitais de DNA , Éxons , Feminino , Regulação da Expressão Gênica , Genes Ligados ao Cromossomo X , Genótipo , Humanos , Imuno-Histoquímica , Cariotipagem , Masculino , Proteína 2 de Ligação a Metil-CpG/metabolismo , Mutação , Neurônios/citologia , Fenótipo
9.
Nat Commun ; 14(1): 668, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750564

RESUMO

Systemic lupus erythematosus is a heritable autoimmune disease that predominantly affects young women. To improve our understanding of genetic etiology, we conduct multi-ancestry and multi-trait meta-analysis of genome-wide association studies, encompassing 12 systemic lupus erythematosus cohorts from 3 different ancestries and 10 genetically correlated autoimmune diseases, and identify 16 novel loci. We also perform transcriptome-wide association studies, computational drug repurposing analysis, and cell type enrichment analysis. We discover putative drug classes, including a histone deacetylase inhibitor that could be repurposed to treat lupus. We also identify multiple cell types enriched with putative target genes, such as non-classical monocytes and B cells, which may be targeted for future therapeutics. Using this newly assembled result, we further construct polygenic risk score models and demonstrate that integrating polygenic risk score with clinical lab biomarkers improves the diagnostic accuracy of systemic lupus erythematosus using the Vanderbilt BioVU and Michigan Genomics Initiative biobanks.


Assuntos
Doenças Autoimunes , Lúpus Eritematoso Sistêmico , Humanos , Feminino , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença , Fenótipo , Polimorfismo de Nucleotídeo Único
10.
bioRxiv ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38077089

RESUMO

Apes possess two sex chromosomes-the male-specific Y and the X shared by males and females. The Y chromosome is crucial for male reproduction, with deletions linked to infertility. The X chromosome carries genes vital for reproduction and cognition. Variation in mating patterns and brain function among great apes suggests corresponding differences in their sex chromosome structure and evolution. However, due to their highly repetitive nature and incomplete reference assemblies, ape sex chromosomes have been challenging to study. Here, using the state-of-the-art experimental and computational methods developed for the telomere-to-telomere (T2T) human genome, we produced gapless, complete assemblies of the X and Y chromosomes for five great apes (chimpanzee, bonobo, gorilla, Bornean and Sumatran orangutans) and a lesser ape, the siamang gibbon. These assemblies completely resolved ampliconic, palindromic, and satellite sequences, including the entire centromeres, allowing us to untangle the intricacies of ape sex chromosome evolution. We found that, compared to the X, ape Y chromosomes vary greatly in size and have low alignability and high levels of structural rearrangements. This divergence on the Y arises from the accumulation of lineage-specific ampliconic regions and palindromes (which are shared more broadly among species on the X) and from the abundance of transposable elements and satellites (which have a lower representation on the X). Our analysis of Y chromosome genes revealed lineage-specific expansions of multi-copy gene families and signatures of purifying selection. In summary, the Y exhibits dynamic evolution, while the X is more stable. Finally, mapping short-read sequencing data from >100 great ape individuals revealed the patterns of diversity and selection on their sex chromosomes, demonstrating the utility of these reference assemblies for studies of great ape evolution. These complete sex chromosome assemblies are expected to further inform conservation genetics of nonhuman apes, all of which are endangered species.

11.
Front Immunol ; 13: 889296, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35833142

RESUMO

Genome-wide association studies (GWAS) have identified hundreds of genetic variants associated with autoimmune diseases and provided unique mechanistic insights and informed novel treatments. These individual genetic variants on their own typically confer a small effect of disease risk with limited predictive power; however, when aggregated (e.g., via polygenic risk score method), they could provide meaningful risk predictions for a myriad of diseases. In this review, we describe the recent advances in GWAS for autoimmune diseases and the practical application of this knowledge to predict an individual's susceptibility/severity for autoimmune diseases such as systemic lupus erythematosus (SLE) via the polygenic risk score method. We provide an overview of methods for deriving different polygenic risk scores and discuss the strategies to integrate additional information from correlated traits and diverse ancestries. We further advocate for the need to integrate clinical features (e.g., anti-nuclear antibody status) with genetic profiling to better identify patients at high risk of disease susceptibility/severity even before clinical signs or symptoms develop. We conclude by discussing future challenges and opportunities of applying polygenic risk score methods in clinical care.


Assuntos
Doenças Autoimunes , Lúpus Eritematoso Sistêmico , Doenças Autoimunes/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Humanos , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/genética , Fatores de Risco
12.
Nat Commun ; 13(1): 3258, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672318

RESUMO

Transcriptome-wide association studies (TWAS) are popular approaches to test for association between imputed gene expression levels and traits of interest. Here, we propose an integrative method PUMICE (Prediction Using Models Informed by Chromatin conformations and Epigenomics) to integrate 3D genomic and epigenomic data with expression quantitative trait loci (eQTL) to more accurately predict gene expressions. PUMICE helps define and prioritize regions that harbor cis-regulatory variants, which outperforms competing methods. We further describe an extension to our method PUMICE +, which jointly combines TWAS results from single- and multi-tissue models. Across 79 traits, PUMICE + identifies 22% more independent novel genes and increases median chi-square statistics values at known loci by 35% compared to the second-best method, as well as achieves the narrowest credible interval size. Lastly, we perform computational drug repurposing and confirm that PUMICE + outperforms other TWAS methods.


Assuntos
Estudo de Associação Genômica Ampla , Transcriptoma , Reposicionamento de Medicamentos , Epigenômica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Genômica , Humanos , Polimorfismo de Nucleotídeo Único , Transcriptoma/genética
13.
Mol Biol Evol ; 27(11): 2446-50, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20534706

RESUMO

To achieve dosage balance of X-linked genes between mammalian males and females, one female X chromosome becomes inactivated. However, approximately 15% of genes on this inactivated chromosome escape X chromosome inactivation (XCI). Here, using a chromosome-wide analysis of primate X-linked orthologs, we test a hypothesis that such genes evolve under a unique selective pressure. We find that escape genes are subject to stronger purifying selection than inactivated genes and that positive selection does not significantly affect the evolution of these genes. The strength of selection does not differ between escape genes with similar versus different expression levels in males versus females. Intriguingly, escape genes possessing Y homologs evolve under the strongest purifying selection. We also found evidence of stronger conservation in gene expression levels in escape than inactivated genes. We hypothesize that divergence in function and expression between X and Y gametologs is driving such strong purifying selection for escape genes.


Assuntos
Cromossomos Humanos X/genética , Seleção Genética , Inativação do Cromossomo X/genética , Animais , Linhagem Celular , Genes Ligados ao Cromossomo X , Humanos , Macaca/genética , Pan troglodytes/genética , Análise de Regressão , Homologia de Sequência do Ácido Nucleico
14.
Hum Genet ; 130(2): 237-45, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21614513

RESUMO

To achieve a balanced gene expression dosage between males (XY) and females (XX), mammals have evolved a compensatory mechanism to randomly inactivate one of the female X chromosomes. Despite this chromosome-wide silencing, a number of genes escape X inactivation: in women about 15% of X-linked genes are bi-allelically expressed and in mice, about 3%. Expression from the inactive X allele varies from a few percent of that from the active allele to near equal expression. While most genes have a stable inactivation pattern, a subset of genes exhibit tissue-specific differences in escape from X inactivation. Escape genes appear to be protected from the repressive chromatin modifications associated with X inactivation. Differences in the identity and distribution of escape genes between species and tissues suggest a role for these genes in the evolution of sex differences in specific phenotypes. The higher expression of escape genes in females than in males implies that they may have female-specific roles and may be responsible for some of the phenotypes observed in X aneuploidy.


Assuntos
Aneuploidia , Evolução Biológica , Dosagem de Genes/genética , Genes Ligados ao Cromossomo X/genética , Fenótipo , Inativação do Cromossomo X/genética , Animais , Feminino , Humanos , Masculino , Camundongos , Fatores Sexuais , Especificidade da Espécie , Inativação do Cromossomo X/fisiologia
15.
Mamm Genome ; 22(9-10): 572-82, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21769671

RESUMO

X Chromosome inactivation (XCI) silences one copy of most X-linked genes in female mammals. Notably, human and mouse differ strikingly in the number and organization of the genes that escape XCI. While on the human X Chromosome (Chr) escape genes are organized in domains, the few known genes that escape inactivation in the mouse appear to be isolated. Here we characterize the gene Cxorf26 and adjacent noncoding transcripts that map to XqD. We assess allelic expression in a nonrandomly X-inactivated cell line and directly demonstrate that 2610029G23Rik (Cxorf26) and its head-to-head neighbor (5530601H04Rik) escape X inactivation, creating a small escape domain. Both genes are robustly expressed from the inactive X Chr at approximately 50 and 30% of the expression levels of the active X, respectively. Additionally, consistent with XCI escape, the first exon of Cxorf26 is embedded within an unmethylated CpG island. To extend these results, we assayed ncRNAs adjacent to three other escape genes, Eif2s3x, Kdm5c, and Ddx3x. By allelic expression, three ncRNAs (D330035k16Rik, D930009k15Rik, and Gm16481) also escape X inactivation in the mouse, consistent with previous studies that reported female-biased expression. Altogether, these results establish that mouse escapees, like their human counterparts, can be clustered. Moreover, the fact that these ncRNAs are not found on the human X raises intriguing questions about potential regulatory roles of rapidly evolving ncRNAs in controlling escape gene expression.


Assuntos
Transcrição Gênica , Inativação do Cromossomo X , Cromossomo X , Alelos , Animais , Linhagem Celular , Cromatina/metabolismo , Metilação de DNA , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Camundongos , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , RNA Longo não Codificante , RNA não Traduzido/genética , Análise de Sequência de DNA
16.
Nature ; 434(7031): 400-4, 2005 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-15772666

RESUMO

In female mammals, most genes on one X chromosome are silenced as a result of X-chromosome inactivation. However, some genes escape X-inactivation and are expressed from both the active and inactive X chromosome. Such genes are potential contributors to sexually dimorphic traits, to phenotypic variability among females heterozygous for X-linked conditions, and to clinical abnormalities in patients with abnormal X chromosomes. Here, we present a comprehensive X-inactivation profile of the human X chromosome, representing an estimated 95% of assayable genes in fibroblast-based test systems. In total, about 15% of X-linked genes escape inactivation to some degree, and the proportion of genes escaping inactivation differs dramatically between different regions of the X chromosome, reflecting the evolutionary history of the sex chromosomes. An additional 10% of X-linked genes show variable patterns of inactivation and are expressed to different extents from some inactive X chromosomes. This suggests a remarkable and previously unsuspected degree of expression heterogeneity among females.


Assuntos
Cromossomos Humanos X/genética , Cromossomos Humanos Y/genética , Mecanismo Genético de Compensação de Dose , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Caracteres Sexuais , Alelos , Ilhas de CpG/genética , Feminino , Fibroblastos , Heterozigoto , Humanos , Masculino , Fenótipo , RNA Longo não Codificante , RNA Mensageiro/análise , RNA Mensageiro/genética , RNA não Traduzido/genética , Transcrição Gênica/genética
17.
Proc Natl Acad Sci U S A ; 105(44): 17055-60, 2008 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-18971342

RESUMO

Although most genes on one X chromosome in mammalian females are silenced by X inactivation, some "escape" X inactivation and are expressed from both active and inactive Xs. How these escape genes are transcribed from a largely inactivated chromosome is not fully understood, but underlying genomic sequences are likely involved. We developed a transgene approach to ask whether an escape locus is autonomous or is instead influenced by X chromosome location. Two BACs carrying the mouse Jarid1c gene and adjacent X-inactivated transcripts were randomly integrated into mouse XX embryonic stem cells. Four lines with single-copy, X-linked transgenes were identified, and each was inserted into regions that are normally X-inactivated. As expected for genes that are normally subject to X inactivation, transgene transcripts Tspyl2 and Iqsec2 were X-inactivated. However, allelic expression and RNA/DNA FISH indicate that transgenic Jarid1c escapes X inactivation. Therefore, transgenes at 4 different X locations recapitulate endogenous inactive X expression patterns. We conclude that escape from X inactivation is an intrinsic feature of the Jarid1c locus and functionally delimit this escape domain to the 112-kb maximum overlap of the BACs tested. Additionally, although extensive chromatin differences normally distinguish active and inactive loci, unmodified BACs direct proper inactive X expression patterns, establishing that primary DNA sequence alone, in a chromosome position-independent manner, is sufficient to determine X chromosome inactivation status. This transgene approach will enable further dissection of key elements of escape domains and allow rigorous testing of specific genomic sequences on inactive X expression.


Assuntos
Proteínas/genética , Inativação do Cromossomo X , Cromossomo X/genética , Animais , Cromossomos Artificiais Bacterianos/genética , Células-Tronco Embrionárias/metabolismo , Feminino , Histona Desmetilases , Hibridização in Situ Fluorescente , Camundongos , Camundongos Transgênicos , Oxirredutases N-Desmetilantes , Transgenes
18.
Chromosome Res ; 17(5): 637-48, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19802704

RESUMO

Counting chromosomes is not just simple math. Although normal males and females differ in sex chromosome content (XY vs. XX), X chromosome imbalance is tolerated because dosage compensation mechanisms have evolved to ensure functional equivalence. In mammals this is accomplished by two processes--X chromosome inactivation that silences most genes on one X chromosome in females, leading to functional X monosomy for most genes in both sexes, and X chromosome upregulation that results in increased gene expression on the single active X in males and females, equalizing dosage relative to autosomes. This review focuses on genes on the X chromosome, and how gene content, organization and expression levels can be influenced by these two processes. Special attention is given to genes that are not X inactivated, and are not necessarily fully dosage compensated. These genes that "escape" X inactivation are of medical importance as they explain phenotypes in individuals with sex chromosome aneuploidies and may impact normal traits and disorders that differ between men and women. Moreover, escape genes give insight into how X chromosome inactivation is spread and maintained on the X.


Assuntos
Mecanismo Genético de Compensação de Dose , Expressão Gênica , Cromossomo X , Animais , Epigênese Genética , Feminino , Masculino , Mamíferos/genética , Inativação do Cromossomo X
19.
PLoS Genet ; 2(9): e151, 2006 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-17009873

RESUMO

What genomic landmarks render most genes silent while leaving others expressed on the inactive X chromosome in mammalian females? To date, signals determining expression status of genes on the inactive X remain enigmatic despite the availability of complete genomic sequences. Long interspersed repeats (L1s), particularly abundant on the X, are hypothesized to spread the inactivation signal and are enriched in the vicinity of inactive genes. However, both L1s and inactive genes are also more prevalent in ancient evolutionary strata. Did L1s accumulate there because of their role in inactivation or simply because they spent more time on the rarely recombining X? Here we utilize an experimentally derived inactivation profile of the entire human X chromosome to uncover sequences important for its inactivation, and to predict expression status of individual genes. Focusing on Xp22, where both inactive and active genes reside within evolutionarily young strata, we compare neighborhoods of genes with different inactivation states to identify enriched oligomers. Occurrences of such oligomers are then used as features to train a linear discriminant analysis classifier. Remarkably, expression status is correctly predicted for 84% and 91% of active and inactive genes, respectively, on the entire X, suggesting that oligomers enriched in Xp22 capture most of the genomic signal determining inactivation. To our surprise, the majority of oligomers associated with inactivated genes fall within L1 elements, even though L1 frequency in Xp22 is low. Moreover, these oligomers are enriched in parts of L1 sequences that are usually underrepresented in the genome. Thus, our results strongly support the role of L1s in X inactivation, yet indicate that a chromatin microenvironment composed of multiple genomic sequence elements determines expression status of X chromosome genes.


Assuntos
Cromossomos Humanos X/metabolismo , Genoma Humano/fisiologia , Inativação do Cromossomo X/fisiologia , Algoritmos , Classificação/métodos , Biologia Computacional/métodos , Mecanismo Genético de Compensação de Dose , Epigênese Genética , Feminino , Regulação da Expressão Gênica , Genes , Humanos , Modelos Lineares , Dados de Sequência Molecular , Sequências Repetitivas de Ácido Nucleico
20.
Philos Trans R Soc Lond B Biol Sci ; 372(1733)2017 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-28947654

RESUMO

A tribute to Mary Lyon was held in October 2016. Many remarked about Lyon's foresight regarding many intricacies of the X-chromosome inactivation process. One such example is that a year after her original 1961 hypothesis she proposed that genes with Y homologues should escape from X inactivation to achieve dosage compensation between males and females. Fifty-five years later we have learned many details about these escapees that we attempt to summarize in this review, with a particular focus on recent findings. We now know that escapees are not rare, particularly on the human X, and that most lack functionally equivalent Y homologues, leading to their increasingly recognized role in sexually dimorphic traits. Newer sequencing technologies have expanded profiling of primary tissues that will better enable connections to sex-biased disorders as well as provide additional insights into the X-inactivation process. Chromosome organization, nuclear location and chromatin environments distinguish escapees from other X-inactivated genes. Nevertheless, several big questions remain, including what dictates their distinct epigenetic environment, the underlying basis of species differences in escapee regulation, how different classes of escapees are distinguished, and the roles that local sequences and chromosome ultrastructure play in escapee regulation.This article is part of the themed issue 'X-chromosome inactivation: a tribute to Mary Lyon'.


Assuntos
Predisposição Genética para Doença/genética , Lúpus Eritematoso Sistêmico/genética , Inativação do Cromossomo X/genética , Cromossomo X/genética , Animais , Cromossomos Humanos X/genética , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA