RESUMO
Chimeric antigen receptor (CAR) T cell therapy has been successful for hematological malignancies. Still, a lack of efficacy and potential toxicities have slowed its application for other indications. Furthermore, CAR T cells undergo dynamic expansion and contraction in vivo that cannot be easily predicted or controlled. Therefore, the safety and utility of such therapies could be enhanced by engineered mechanisms that engender reversible control and quantitative monitoring. Here, we use a genetic tag based on the enzyme Escherichia coli dihydrofolate reductase (eDHFR), and derivatives of trimethoprim (TMP) to modulate and monitor CAR expression and T cell activity. We fused eDHFR to the CAR C terminus, allowing regulation with TMP-based proteolysis-targeting chimeric small molecules (PROTACs). Fusion of eDHFR to the CAR does not interfere with cell signaling or its cytotoxic function, and the addition of TMP-based PROTACs results in a reversible and dose-dependent inhibition of CAR activity via the proteosome. We show the regulation of CAR expression in vivo and demonstrate imaging of the cells with TMP radiotracers. In vitro immunogenicity assays using primary human immune cells and overlapping peptide fragments of eDHFR showed no memory immune repertoire for eDHFR. Overall, this translationally-orientied approach allows for temporal monitoring and image-guided control of cell-based therapies.
Assuntos
Imunoterapia Adotiva , Linfócitos T , Humanos , Imunoterapia Adotiva/métodos , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Receptores de Antígenos de Linfócitos T/genéticaRESUMO
The impact of intratumoral heterogeneity (ITH) and the resultant neoantigen landscape on T cell immunity are poorly understood. ITH is a widely recognized feature of solid tumors and poses distinct challenges related to the development of effective therapeutic strategies, including cancer neoantigen vaccines. Here, we performed deep targeted DNA sequencing of multiple metastases from melanoma patients and observed ubiquitous sharing of clonal and subclonal single nucleotide variants (SNVs) encoding putative HLA class I-restricted neoantigen epitopes. However, spontaneous antitumor CD8+ T cell immunity in peripheral blood and tumors was restricted to a few clonal neoantigens featuring an oligo-/monoclonal T cell-receptor (TCR) repertoire. Moreover, in various tumors of the 4 patients examined, no neoantigen-specific TCR clonotypes were identified despite clonal neoantigen expression. Mature dendritic cell (mDC) vaccination with tumor-encoded amino acid-substituted (AAS) peptides revealed diverse neoantigen-specific CD8+ T responses, each composed of multiple TCR clonotypes. Isolation of T cell clones by limiting dilution from tumor-infiltrating lymphocytes (TILs) permitted functional validation regarding neoantigen specificity. Gene transfer of TCRαß heterodimers specific for clonal neoantigens confirmed correct TCR clonotype assignments based on high-throughput TCRBV CDR3 sequencing. Our findings implicate immunological ignorance of clonal neoantigens as the basis for ineffective T cell immunity to melanoma and support the concept that therapeutic vaccination, as an adjunct to checkpoint inhibitor treatment, is required to increase the breadth and diversity of neoantigen-specific CD8+ T cells.
Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos do Interstício Tumoral/imunologia , Melanoma/imunologia , Subpopulações de Linfócitos T/imunologia , Substituição de Aminoácidos , Antígenos de Neoplasias/genética , Vacinas Anticâncer/imunologia , Células Clonais , DNA de Neoplasias/genética , Células Dendríticas/imunologia , Antígenos HLA/imunologia , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/secundário , Melanoma/genética , Melanoma/secundário , Polimorfismo de Nucleotídeo Único , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Neoplasias Retroperitoneais/imunologia , Neoplasias Retroperitoneais/secundário , Análise de Sequência de DNA , Especificidade do Receptor de Antígeno de Linfócitos T , Evasão Tumoral , VacinaçãoRESUMO
An obstacle to cancer immunotherapy has been that the affinity of T-cell receptors (TCRs) for antigens expressed in tumors is generally low. We initiated clinical testing of engineered T cells expressing an affinity-enhanced TCR against HLA-A*01-restricted MAGE-A3. Open-label protocols to test the TCRs for patients with myeloma and melanoma were initiated. The first two treated patients developed cardiogenic shock and died within a few days of T-cell infusion, events not predicted by preclinical studies of the high-affinity TCRs. Gross findings at autopsy revealed severe myocardial damage, and histopathological analysis revealed T-cell infiltration. No MAGE-A3 expression was detected in heart autopsy tissues. Robust proliferation of the engineered T cells in vivo was documented in both patients. A beating cardiomyocyte culture generated from induced pluripotent stem cells triggered T-cell killing, which was due to recognition of an unrelated peptide derived from the striated muscle-specific protein titin. These patients demonstrate that TCR-engineered T cells can have serious and not readily predictable off-target and organ-specific toxicities and highlight the need for improved methods to define the specificity of engineered TCRs.
Assuntos
Doenças Cardiovasculares/complicações , Melanoma/sangue , Mieloma Múltiplo/sangue , Proteínas Musculares/metabolismo , Miocárdio/patologia , Proteínas Quinases/metabolismo , Linfócitos T/citologia , Alelos , Motivos de Aminoácidos , Antígenos de Neoplasias/metabolismo , Técnicas de Cultura de Células , Conectina , Citocinas/metabolismo , Epitopos/metabolismo , Antígenos HLA-A/metabolismo , Humanos , Imunoterapia Adotiva , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Melanoma/terapia , Pessoa de Meia-Idade , Mieloma Múltiplo/terapia , Miocárdio/imunologia , Proteínas de Neoplasias/metabolismo , Peptídeos/metabolismo , Engenharia de Proteínas , Receptores de Antígenos de Linfócitos T/imunologiaRESUMO
Upon Ag exposure, most memory T cells undergo restimulation-induced cell death. In this article, we describe a novel synthetic agonist, an N-terminal extended decamer peptide expressed as a single-chain trimer, the amino-terminal extended peptide MHC class I single-chain trimer (AT-SCT), which preferentially promotes the growth of memory human CD8(+) T cells with minimal restimulation-induced cell death. Using CMV pp65 and melanoma gp100 Ags, we observe the in vitro numerical expansion of a clonally diverse polyfunctional population of Ag-specific CD8(+) T cells from healthy individuals and vaccinated melanoma patients, respectively. Memory CD8(+) T cells stimulated with AT-SCT presented on MHC class I/II-null cells show reduced cytokine production, slower kinetics of TCR downregulation, and decreased cell death compared with native nonamer MHC class I single-chain trimer (SCT)-activated T cells. However, both ERK phosphorylation and cell cycle kinetics are identical in AT-SCT- and SCT-activated T cells. Probing of SCT and AT-SCT peptide-MHC complexes using fluorochrome-conjugated TCR multimers suggests that nonamer- and decamer-linked peptides may be anchored differently to the HLA-A2 peptide-binding groove. Our findings demonstrate that modified peptide-MHC structures, such as AT-SCT, can be engineered as T cell agonists to promote the growth and expansion of memory human CD8(+) T cells.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Antígeno HLA-A2/imunologia , Memória Imunológica/imunologia , Ativação Linfocitária/imunologia , Fragmentos de Peptídeos/imunologia , Apoptose/imunologia , Proliferação de Células , Citocinas/biossíntese , Citometria de Fluxo , Humanos , Proteínas Recombinantes de Fusão/imunologiaRESUMO
In this commentary, we advance the notion that mutant KRAS (mKRAS) is an ideal tumor neoantigen that is amenable for targeting by the adaptive immune system. Recent progress highlights key advances on various fronts that validate mKRAS as a molecular target and support further pursuit as an immunological target. Because mKRAS is an intracellular membrane localized protein and not normally expressed on the cell surface, we surmise that proteasome degradation will generate short peptides that bind to HLA class I (HLA-I) molecules in the endoplasmic reticulum for transport through the Golgi for display on the cell surface. T-cell receptors (TCR)αß and antibodies have been isolated that specifically recognize mKRAS encoded epitope(s) or haptenated-mKRAS peptides in the context of HLA-I on tumor cells. Case reports using adoptive T-cell therapy provide proof of principle that KRAS G12D can be successfully targeted by the immune system in patients with cancer. Among the challenges facing investigators is the requirement of precision medicine to identify and match patients to available mKRAS peptide/HLA therapeutics and to increase the population coverage by targeting additional mKRAS epitopes. Ultimately, we envision mKRAS-directed immunotherapy as an effective treatment option for selected patients that will complement and perhaps synergize with small-molecule mKRAS inhibitors and targeted mKRAS degraders.
Assuntos
Antígenos de Neoplasias , Imunoterapia , Mutação , Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/imunologia , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias/genética , Imunoterapia/métodos , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/genética , Terapia de Alvo MolecularRESUMO
BACKGROUNDNeoantigens derived from KRASMUT have been described, but the fine antigen specificity of T cell responses directed against these epitopes is poorly understood. Here, we explore KRASMUT immunogenicity and the properties of 4 T cell receptors (TCRs) specific for KRASG12V restricted to the HLA-A3 superfamily of class I alleles.METHODSA phase 1 clinical vaccine trial targeting KRASMUT was conducted. TCRs targeting KRASG12V restricted to HLA-A*03:01 or HLA-A*11:01 were isolated from vaccinated patients or healthy individuals. A comprehensive analysis of TCR antigen specificity, affinity, crossreactivity, and CD8 coreceptor dependence was performed. TCR lytic activity was evaluated, and target antigen density was determined by quantitative immunopeptidomics.RESULTSVaccination against KRASMUT resulted in the priming of CD8+ and CD4+ T cell responses. KRASG12V -specific natural (not affinity enhanced) TCRs exhibited exquisite specificity to mutated protein with no discernible reactivity against KRASWT. TCR-recognition motifs were determined and used to identify and exclude crossreactivity to noncognate peptides derived from the human proteome. Both HLA-A*03:01 and HLA-A*11:01-restricted TCR-redirected CD8+ T cells exhibited potent lytic activity against KRASG12V cancers, while only HLA-A*11:01-restricted TCR-T CD4+ T cells exhibited antitumor effector functions consistent with partial coreceptor dependence. All KRASG12V-specific TCRs displayed high sensitivity for antigen as demonstrated by their ability to eliminate tumor cell lines expressing low levels of peptide/HLA (4.4 to 242) complexes per cell.CONCLUSIONThis study identifies KRASG12V-specific TCRs with high therapeutic potential for the development of TCR-T cell therapies.TRIAL REGISTRATIONClinicalTrials.gov NCT03592888.FUNDINGAACR SU2C/Lustgarten Foundation, Parker Institute for Cancer Immunotherapy, and NIH.
Assuntos
Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Receptores de Antígenos de Linfócitos T , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/genética , Neoplasias/imunologia , Neoplasias/genética , Neoplasias/terapia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Mutação de Sentido Incorreto , Substituição de Aminoácidos , Linfócitos T CD4-Positivos/imunologia , FemininoRESUMO
We conducted a phase I clinical trial of anti-BCMA chimeric antigen receptor T cells (CART-BCMA) with or without anti-CD19 CAR T cells (huCART19) in multiple myeloma (MM) patients responding to third- or later-line therapy (phase A, N = 10) or high-risk patients responding to first-line therapy (phase B, N = 20), followed by early lenalidomide or pomalidomide maintenance. We observed no high-grade cytokine release syndrome (CRS) and only one instance of low-grade neurologic toxicity. Among 15 subjects with measurable disease, 10 exhibited partial response (PR) or better; among 26 subjects responding to prior therapy, 9 improved their response category and 4 converted to minimal residual disease (MRD)-negative complete response/stringent complete response. Early maintenance therapy was safe, feasible, and coincided in some patients with CAR T-cell reexpansion and late-onset, durable clinical response. Outcomes with CART-BCMA + huCART19 were similar to CART-BCMA alone. Collectively, our results demonstrate favorable safety, pharmacokinetics, and antimyeloma activity of dual-target CAR T-cell therapy in early lines of MM treatment. SIGNIFICANCE: CAR T cells in early lines of MM therapy could be safer and more effective than in the advanced setting, where prior studies have focused. We evaluated the safety, pharmacokinetics, and efficacy of CAR T cells in patients with low disease burden, responding to current therapy, combined with standard maintenance therapy. This article is highlighted in the In This Issue feature, p. 101.
Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Mieloma Múltiplo/terapia , Receptores de Antígenos Quiméricos/uso terapêutico , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Lenalidomida/uso terapêutico , Antígenos CD19/uso terapêutico , Linfócitos TRESUMO
In the mid 1990's, a convergence of discoveries in dendritic cell (DC) biology and tumor antigen identification led investigators to study DCs as adjuvants for cancer vaccines. On the twentieth anniversary of a seminal clinical study by Jacques Banchereau and colleagues, we revisit the key events that prompted the initial wave of DC vaccine clinical studies and lessons learned that, in our opinion, helped forge the path for the field that we now call immuno-oncology. It is essential to recall that prior to the discovery of immune checkpoint therapy and chimeric antigen receptor (CAR) T-cell therapy, skepticism prevailed regarding the potential therapeutic benefit of immunotherapies. In hindsight, we can now appreciate how the early DC cancer vaccine trials helped investigators sustain their attention on adaptive immunity specific for malignant cells. These vaccines demonstrated clear evidence for induction of antigen-specific T cells and were well tolerated despite low rates of objective clinical response. In the context of the current era some 20 years later, harnessing DC vaccines has been shown to increase the breadth and diversity of tumor-specific T cells, and by trafficking to sites of metastases promote an inflamed tumor microenvironment. See related article by Banchereau and colleagues, Cancer Res 2001; 61:6451-8.
Assuntos
Vacinas Anticâncer , Neoplasias , Aniversários e Eventos Especiais , Células Dendríticas , Humanos , Imunoterapia , Imunoterapia Adotiva , Neoplasias/terapia , Microambiente TumoralRESUMO
Despite the success of CAR-T cell cancer immunotherapy, challenges in efficacy and safety remain. Investigators have begun to enhance CAR-T cells with the expression of accessory molecules to address these challenges. Current systems rely on constitutive transgene expression or multiple viral vectors, resulting in unregulated response and product heterogeneity. Here, we develop a genetic platform that combines autonomous antigen-induced production of an accessory molecule with constitutive CAR expression in a single lentiviral vector called Uni-Vect. The broad therapeutic application of Uni-Vect is demonstrated in vivo by activation-dependent expression of (1) an immunostimulatory cytokine that improves efficacy, (2) an antibody that ameliorates cytokine-release syndrome, and (3) transcription factors that modulate T cell biology. Uni-Vect is also implemented as a platform to characterize immune receptors. Overall, we demonstrate that Uni-Vect provides a foundation for a more clinically actionable next-generation cellular immunotherapy.
Assuntos
Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T , Humanos , Imunoterapia Adotiva/métodos , Linfócitos T , Vetores Genéticos/genética , Citocinas/metabolismoRESUMO
Acquired aplastic anemia (AA) is caused by autoreactive T cell-mediated destruction of early hematopoietic cells. Somatic loss of human leukocyte antigen (HLA) class I alleles was identified as a mechanism of immune escape in surviving hematopoietic cells of some patients with AA. However, pathogenicity, structural characteristics, and clinical impact of specific HLA alleles in AA remain poorly understood. Here, we evaluated somatic HLA loss in 505 patients with AA from 2 multi-institutional cohorts. Using a combination of HLA mutation frequencies, peptide-binding structures, and association with AA in an independent cohort of 6,323 patients from the National Marrow Donor Program, we identified 19 AA risk alleles and 12 non-risk alleles and established a potentially novel AA HLA pathogenicity stratification. Our results define pathogenicity for the majority of common HLA-A/B alleles across diverse populations. Our study demonstrates that HLA alleles confer different risks of developing AA, but once AA develops, specific alleles are not associated with response to immunosuppression or transplant outcomes. However, higher pathogenicity alleles, particularly HLA-B*14:02, are associated with higher rates of clonal evolution in adult patients with AA. Our study provides insights into the immune pathogenesis of AA, opening the door to future autoantigen identification and improved understanding of clonal evolution in AA.
Assuntos
Anemia Aplástica , Adulto , Humanos , Anemia Aplástica/genética , Anemia Aplástica/patologia , Alelos , Antígenos de Histocompatibilidade Classe I/genética , Antígenos HLA-B/genética , Antígenos HLA/genéticaRESUMO
OBJECTIVES: With a rapidly growing list of candidate immune-based cancer therapeutics, there is a critical need to generate highly reliable animal models to preclinically evaluate the efficacy of emerging immune-based therapies, facilitating successful clinical translation. Our aim was to design and validate a novel in vivo model (called Xenomimetic or 'X' mouse) that allows monitoring of the ability of human tumor-specific T cells to suppress tumor growth following their entry into the tumor. METHODS: Tumor xenografts are established rapidly in the greater omentum of globally immunodeficient NOD-scid IL2Rγnull (NSG) mice following an intraperitoneal injection of melanoma target cells expressing tumor neoantigen peptides, as well as green fluorescent protein and/or luciferase. Changes in tumor burden, as well as in the number and phenotype of adoptively transferred patient-derived tumor neoantigen-specific T cells in response to immunotherapy, are measured by imaging to detect fluorescence/luminescence and flow cytometry, respectively. RESULTS: The tumors progress rapidly and disseminate in the mice unless patient-derived tumor-specific T cells are introduced. An initial T cell-mediated tumor arrest is later followed by a tumor escape, which correlates with the upregulation of the checkpoint molecules programmed cell death-1 (PD-1) and lymphocyte-activation gene 3 (LAG3) on T cells. Treatment with immune-based therapies that target these checkpoints, such as anti-PD-1 antibody (nivolumab) or interleukin-12 (IL-12), prevented or delayed the tumor escape. Furthermore, IL-12 treatment suppressed PD-1 and LAG3 upregulation on T cells. CONCLUSION: Together, these results validate the X-mouse model and establish its potential to preclinically evaluate the therapeutic efficacy of immune-based therapies.
RESUMO
BACKGROUND: The human tumor microenvironment (TME) is a complex and dynamic milieu of diverse acellular and cellular components, creating an immunosuppressive environment, which contributes to tumor progression. We have previously shown that phosphatidylserine (PS) expressed on the surface of exosomes isolated from human TMEs is causally linked to T-cell immunosuppression, representing a potential immunotherapeutic target. In this study, we investigated the effect of ExoBlock, a novel PS-binding molecule, on T-cell responses in the TME. METHODS: We designed and synthesized a new compound, (ZnDPA)6-DP-15K, a multivalent PS binder named ExoBlock. The PS-binding avidity of ExoBlock was tested using an in vitro competition assay. The ability of this molecule to reverse exosome-mediated immunosuppression in vitro was tested using human T-cell activation assays. The in vivo therapeutic efficacy of ExoBlock was then tested in two different human tumor xenograft models, the melanoma-based xenomimetic (X-)mouse model, and the ovarian tumor-based omental tumor xenograft (OTX) model. RESULTS: ExoBlock was able to bind PS with high avidity and was found to consistently and significantly block the immunosuppressive activity of human ovarian tumor and melanoma-associated exosomes in vitro. ExoBlock was also able to significantly enhance T cell-mediated tumor suppression in vivo in both the X-mouse and the OTX model. In the X-mouse model, ExoBlock suppressed tumor recurrence in a T cell-dependent manner. In the OTX model, ExoBlock treatment resulted in an increase in the number as well as function of CD4 and CD8 T cells in the TME, which was associated with a reduction in tumor burden and metastasis, as well as in the number of circulating PS+ exosomes in tumor-bearing mice. CONCLUSION: Our results establish that targeting exosomal PS in TMEs with ExoBlock represents a promising strategy to enhance antitumor T-cell responses.
Assuntos
Exossomos/metabolismo , Neoplasias/imunologia , Neoplasias Ovarianas/genética , Fosfatidilserinas/metabolismo , Linfócitos T/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Neoplasias Ovarianas/patologia , Microambiente TumoralRESUMO
BACKGROUND: Preclinical studies and early clinical trials have shown that targeting cancer neoantigens is a promising approach towards the development of personalized cancer immunotherapies. DNA vaccines can be rapidly and efficiently manufactured and can integrate multiple neoantigens simultaneously. We therefore sought to optimize the design of polyepitope DNA vaccines and test optimized polyepitope neoantigen DNA vaccines in preclinical models and in clinical translation. METHODS: We developed and optimized a DNA vaccine platform to target multiple neoantigens. The polyepitope DNA vaccine platform was first optimized using model antigens in vitro and in vivo. We then identified neoantigens in preclinical breast cancer models through genome sequencing and in silico neoantigen prediction pipelines. Optimized polyepitope neoantigen DNA vaccines specific for the murine breast tumor E0771 and 4T1 were designed and their immunogenicity was tested in vivo. We also tested an optimized polyepitope neoantigen DNA vaccine in a patient with metastatic pancreatic neuroendocrine tumor. RESULTS: Our data support an optimized polyepitope neoantigen DNA vaccine design encoding long (≥20-mer) epitopes with a mutant form of ubiquitin (Ubmut) fused to the N-terminus for antigen processing and presentation. Optimized polyepitope neoantigen DNA vaccines were immunogenic and generated robust neoantigen-specific immune responses in mice. The magnitude of immune responses generated by optimized polyepitope neoantigen DNA vaccines was similar to that of synthetic long peptide vaccines specific for the same neoantigens. When combined with immune checkpoint blockade therapy, optimized polyepitope neoantigen DNA vaccines were capable of inducing antitumor immunity in preclinical models. Immune monitoring data suggest that optimized polyepitope neoantigen DNA vaccines are capable of inducing neoantigen-specific T cell responses in a patient with metastatic pancreatic neuroendocrine tumor. CONCLUSIONS: We have developed and optimized a novel polyepitope neoantigen DNA vaccine platform that can target multiple neoantigens and induce antitumor immune responses in preclinical models and neoantigen-specific responses in clinical translation.
Assuntos
Antígenos de Neoplasias/imunologia , Epitopos/imunologia , Imunidade , Pesquisa Translacional Biomédica , Vacinas de DNA/imunologia , Adulto , Animais , Apresentação de Antígeno/imunologia , Proliferação de Células , Modelos Animais de Doenças , Feminino , Células HeLa , Humanos , Inibidores de Checkpoint Imunológico , Imunoterapia , Masculino , Neoplasias Mamárias Animais/patologia , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Tumores Neuroendócrinos/imunologia , Tumores Neuroendócrinos/patologia , Peptídeos/imunologia , Linfócitos T/imunologiaRESUMO
Activating RAS missense mutations are among the most prevalent genomic alterations observed in human cancers and drive oncogenesis in the three most lethal tumor types. Emerging evidence suggests mutant KRAS (mKRAS) may be targeted immunologically, but mKRAS epitopes remain poorly defined. Here we employ a multi-omics approach to characterize HLA class I-restricted mKRAS epitopes. We provide proteomic evidence of mKRAS epitope processing and presentation by high prevalence HLA class I alleles. Select epitopes are immunogenic enabling mKRAS-specific TCRαß isolation. TCR transfer to primary CD8+ T cells confers cytotoxicity against mKRAS tumor cell lines independent of histologic origin, and the kinetics of lytic activity correlates with mKRAS peptide-HLA class I complex abundance. Adoptive transfer of mKRAS-TCR engineered CD8+ T cells leads to tumor eradication in a xenograft model of metastatic lung cancer. This study validates mKRAS peptides as bona fide epitopes facilitating the development of immune therapies targeting this oncoprotein.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Carcinogênese/imunologia , Epitopos de Linfócito T/imunologia , Neoplasias Pulmonares/imunologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Transferência Adotiva , Alelos , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Mutação , Peptídeos/genética , Peptídeos/imunologia , Proteômica , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
T cell activation through the T cell receptor (TCR) involves partitioning of receptors into discrete membrane compartments known as lipid rafts, and the formation of an immunological synapse (IS) between the T cell and antigen-presenting cell (APC). Compartmentalization of negative regulators of T cell activation such as cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) is unknown. Recent crystal structures of B7-ligated CTLA-4 suggest that it may form lattices within the IS which could explain the mechanism of action of this molecule. Here, we show that after T cell stimulation, CTLA-4 coclusters with the TCR and the lipid raft ganglioside GM1 within the IS. Using subcellular fractionation, we show that most lipid raft-associated CTLA-4 is on the T cell surface. Such compartmentalization is dependent on the cytoplasmic tail of CTLA-4 and can be forced with a glycosylphosphatidylinositol-anchor in CTLA-4. The level of CTLA-4 within lipid rafts increases under conditions of APC-dependent TCR-CTLA-4 coligation and T cell inactivation. However, raft localization, although necessary for inhibition of T cell activation, is not sufficient for CTLA-4-mediated negative signaling. These data demonstrate that CTLA-4 within lipid rafts migrates to the IS where it can potentially form lattice structures and inhibit T cell activation.
Assuntos
Antígenos de Diferenciação/metabolismo , Imunoconjugados , Ativação Linfocitária , Microdomínios da Membrana/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Abatacepte , Células Apresentadoras de Antígenos/imunologia , Antígenos CD , Antígenos de Diferenciação/genética , Antígeno CTLA-4 , Citometria de Fluxo , Glicosilfosfatidilinositóis/metabolismo , Humanos , Interleucina-2/antagonistas & inibidores , Células Jurkat , Microdomínios da Membrana/química , Microscopia Confocal , Dados de Sequência Molecular , Transporte Proteico , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais , Linfócitos T/citologiaRESUMO
IL-17A and IL-17F, produced by the Th17 CD4(+) T cell lineage, have been linked to a variety of inflammatory and autoimmune conditions. We recently reported that activated human CD4(+) T cells produce not only IL-17A and IL-17F homodimers but also an IL-17F/IL-17A heterodimeric cytokine. All three cytokines can induce chemokine secretion from bronchial epithelial cells, albeit with different potencies. In this study, we used small interfering RNA and Abs to IL-17RA and IL-17RC to demonstrate that heterodimeric IL-17F/IL-17A cytokine activity is dependent on the IL-17RA/IL-17RC receptor complex. Interestingly, surface plasmon resonance studies indicate that the three cytokines bind to IL-17RC with comparable affinities, whereas they bind to IL-17RA with different affinities. Thus, we evaluated the effect of the soluble receptors on cytokine activity and we find that soluble receptors exhibit preferential cytokine blockade. IL-17A activity is inhibited by IL-17RA, IL-17F is inhibited by IL-17RC, and a combination of soluble IL-17RA/IL-17RC receptors is required for inhibition of the IL-17F/IL-17A activity. Altogether, these results indicate that human IL-17F/IL-17A cytokine can bind and signal through the same receptor complex as human IL-17F and IL-17A. However, the distinct affinities of the receptor components for IL-17A, IL-17F, and IL-17F/IL-17A heterodimer can be exploited to differentially affect the activity of these cytokines.
Assuntos
Interleucina-17/fisiologia , Receptores de Interleucina-17/fisiologia , Receptores de Interleucina/fisiologia , Transdução de Sinais/imunologia , Linhagem Celular , Dimerização , Relação Dose-Resposta Imunológica , Humanos , Interleucina-17/antagonistas & inibidores , Interleucina-17/química , Interleucina-17/metabolismo , Ligação Proteica/imunologia , Receptores de Interleucina/metabolismo , Receptores de Interleucina-17/metabolismoRESUMO
PURPOSE: Immunodeficient mice serve as critical hosts for transplantation of xenogeneic cells for in vivo analysis of various biological processes. Because investigators typically select one or two immunodeficient mouse strains as recipients, no comprehensive study has been published documenting differences in human tumor engraftment. Taking advantage of the increased metastatic potential of RhoC-expressing human (A375) melanoma cells, we evaluate four immunodeficient mouse strains: severe combined immunodeficiency (scid), nonobese diabetic (NOD)-scid, NOD-scid beta2m(null), and NOD-scid IL2Rgamma(null) as xenograft tumor recipients. EXPERIMENTAL DESIGN: Bioluminescence, magnetic resonance imaging, and histopathology were used to monitor serial tumor growth. Natural killer (NK) cell function was examined in each mouse strain using standard (51)Chromium release assays. RESULTS: Melanoma metastases growth is delayed and variable in scid and NOD-scid mice. In contrast, NOD-scid beta2m(null) and NOD-scid IL2Rgamma(null) mice show rapid tumor engraftment, although tumor growth is variable in NOD-scid beta2m(null) mice. NK cells were detected in all strains except NOD-scid IL2Rgamma(null), and in vitro activated scid, NOD-scid, and NOD-scid beta2m(null) NK cells kill human melanoma lines and primary melanoma cells. Expression of human NKG2D ligands MHC class I chain-related A and B molecules renders melanoma susceptible to murine NK cell-mediated cytotoxicity and killing is inhibited by antibody blockade of murine NKG2D. CONCLUSIONS: Murine NKG2D recognition of MICA/B is an important receptor-ligand interaction used by NK cells in immunodeficient strains to limit engraftment of human tumors. The absolute NK deficiency in NOD-scid IL2Rgamma(null) animals makes this strain an excellent recipient of melanoma and potentially other human malignancies.
Assuntos
Neoplasias Pulmonares/secundário , Melanoma Experimental/patologia , Carga Tumoral , Animais , Linhagem Celular Tumoral , Citotoxicidade Imunológica/imunologia , Citometria de Fluxo , Proteínas Ligadas por GPI , Sobrevivência de Enxerto , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Subunidade gama Comum de Receptores de Interleucina/genética , Subunidade gama Comum de Receptores de Interleucina/metabolismo , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Luciferases/genética , Luciferases/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Tempo , Transplante Heterólogo , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Proteína de Ligação a GTP rhoCRESUMO
CRISPR-Cas9 gene editing provides a powerful tool to enhance the natural ability of human T cells to fight cancer. We report a first-in-human phase 1 clinical trial to test the safety and feasibility of multiplex CRISPR-Cas9 editing to engineer T cells in three patients with refractory cancer. Two genes encoding the endogenous T cell receptor (TCR) chains, TCRα (TRAC) and TCRß (TRBC), were deleted in T cells to reduce TCR mispairing and to enhance the expression of a synthetic, cancer-specific TCR transgene (NY-ESO-1). Removal of a third gene encoding programmed cell death protein 1 (PD-1; PDCD1), was performed to improve antitumor immunity. Adoptive transfer of engineered T cells into patients resulted in durable engraftment with edits at all three genomic loci. Although chromosomal translocations were detected, the frequency decreased over time. Modified T cells persisted for up to 9 months, suggesting that immunogenicity is minimal under these conditions and demonstrating the feasibility of CRISPR gene editing for cancer immunotherapy.
Assuntos
Transferência Adotiva , Sistemas CRISPR-Cas , Edição de Genes , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Linfócitos T/imunologia , Linfócitos T/transplante , Idoso , Proteína 9 Associada à CRISPR , Engenharia Celular , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/genética , TransgenesRESUMO
PURPOSE OF REVIEW: Checkpoint inhibitors block co-inhibitory signals which serves to promote T cell activation/reinvigoration in the periphery and tumor microenvironment. A brief historical background as well as a summary of key observations related to the composition and prognostic value of tumor-infiltrating lymphocytes (TILs) is discussed. RECENT FINDINGS: Solid tumor patients that respond to checkpoint inhibitors have greater CD8+ T cell densities (at the tumor margin) associated with a gene inflammation signature and high tumor mutational burden. The precise specificity of effector (CD8+ T cell) TIL remains poorly defined and this deficiency represents a major challenge for the field of cancer immunology. High mutational burden cancers such as melanoma provides compelling evidence that missense mutations create neoantigens which can serve as target antigens for the immune system. Emerging evidence suggests that neoantigen-specific TILs are the major effector cells that mediate tumor regression due to checkpoint inhibition.