Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 44(3): 582-596, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26921108

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a devastating lung disorder with increasing incidence. Mitochondrial oxidative stress in alveolar macrophages is directly linked to pulmonary fibrosis. Mitophagy, the selective engulfment of dysfunctional mitochondria by autophagasomes, is important for cellular homeostasis and can be induced by mitochondrial oxidative stress. Here, we show Akt1 induced macrophage mitochondrial reactive oxygen species (ROS) and mitophagy. Mice harboring a conditional deletion of Akt1 in macrophages (Akt1(-/-)Lyz2-cre) and Park2(-/-) mice had impaired mitophagy and reduced active transforming growth factor-ß1 (TGF-ß1). Although Akt1 increased TGF-ß1 expression, mitophagy inhibition in Akt1-overexpressing macrophages abrogated TGF-ß1 expression and fibroblast differentiation. Importantly, conditional Akt1(-/-)Lyz2-cre mice and Park2(-/-) mice had increased macrophage apoptosis and were protected from pulmonary fibrosis. Moreover, IPF alveolar macrophages had evidence of increased mitophagy and displayed apoptosis resistance. These observations suggest that Akt1-mediated mitophagy contributes to alveolar macrophage apoptosis resistance and is required for pulmonary fibrosis development.


Assuntos
Fibrose Pulmonar Idiopática/imunologia , Pulmão/patologia , Macrófagos Alveolares/fisiologia , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Apoptose/genética , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Fibrose , Humanos , Fibrose Pulmonar Idiopática/induzido quimicamente , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Mitofagia/genética , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-akt/genética , Espécies Reativas de Oxigênio/metabolismo , Deleção de Sequência/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
J Immunol ; 211(11): 1714-1724, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37782053

RESUMO

Epidemiological evidence indicates that exposure to particulate matter is linked to the development of idiopathic pulmonary fibrosis (IPF) and increases the incidence of acute exacerbations of IPF. In addition to accelerating the rate of lung function decline, exposure to fine particulate matter (particulate matter smaller than 2.5 µm [PM2.5]) is a risk factor for increased mortality in subjects with IPF. In this article, we show that exposure to PM2.5 mediates monocyte recruitment and fibrotic progression in mice with established fibrosis. In mice with established fibrosis, bronchoalveolar lavage cells showed monocyte/macrophage heterogeneity after exposure to PM2.5. These cells had a significant inflammatory and anti-inflammatory signature. The mixed heterogeneity of cells contributed to the proinflammatory and anti-inflammatory response. Although monocyte-derived macrophages were recruited to the lung in bleomycin-injured mice treated with PM2.5, recruitment of monocytes expressing Ly6Chi to the lung promoted progression of fibrosis, reduced lung aeration on computed tomography, and impacted lung compliance. Ly6Chi monocytes isolated from PM2.5-exposed fibrotic mice showed enhanced expression of proinflammatory markers compared with fibrotic mice exposed to vehicle. Moreover, IPF bronchoalveolar lavage cells treated ex vivo with PM2.5 showed an exaggerated inflammatory response. Targeting Ly6Chi monocyte recruitment inhibited fibrotic progression in mice. Moreover, the adoptive transfer of Ly6Chi monocytes exacerbated established fibrosis. These observations suggest that enhanced recruitment of Ly6Chi monocytes with a proinflammatory phenotype mediates acute exacerbations of pulmonary fibrosis, and targeting these cells may provide a potential novel therapeutic target to protect against acute exacerbations of IPF.


Assuntos
Fibrose Pulmonar Idiopática , Pulmão , Humanos , Camundongos , Animais , Pulmão/patologia , Fibrose Pulmonar Idiopática/patologia , Fibrose , Bleomicina/uso terapêutico , Material Particulado/efeitos adversos , Anti-Inflamatórios/uso terapêutico
3.
J Biol Chem ; 299(5): 104695, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37044213

RESUMO

Pulmonary fibrosis is a progressive lung disease characterized by macrophage activation. Asbestos-induced expression of nicotinamide adenine dinucleotide phosphate hydrogen oxidase 4 (NOX4) in lung macrophages mediates fibrotic progression by the generation of mitochondrial reactive oxygen species (ROS), modulating mitochondrial biogenesis, and promoting apoptosis resistance; however, the mechanism(s) by which NOX4 localizes to mitochondria during fibrosis is not known. Here, we show that NOX4 localized to the mitochondrial matrix following asbestos exposure in lung macrophages via direct interaction with TIM23. TIM23 and NOX4 interaction was found in lung macrophages from human subjects with asbestosis, while it was absent in mice harboring a conditional deletion of NOX4 in lung macrophages. This interaction was localized to the proximal transmembrane region of NOX4. Mechanistically, TIM23 augmented NOX4-induced mitochondrial ROS and metabolic reprogramming to oxidative phosphorylation. Silencing TIM23 decreased mitochondrial ROS and oxidative phosphorylation. These observations highlight the important role of the mitochondrial translocase TIM23 interaction with NOX4. Moreover, this interaction is required for mitochondrial redox signaling and metabolic reprogramming in lung macrophages.


Assuntos
Macrófagos Alveolares , Mitocôndrias , NADPH Oxidase 4 , Animais , Humanos , Camundongos , Fibrose , Macrófagos Alveolares/metabolismo , Mitocôndrias/metabolismo , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , Espécies Reativas de Oxigênio/metabolismo
4.
J Biol Chem ; 297(1): 100810, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34023385

RESUMO

Pulmonary fibrosis is a progressive lung disease often occurring secondary to environmental exposure. Asbestos exposure is an important environmental mediator of lung fibrosis and remains a significant cause of disease despite strict regulations to limit exposure. Lung macrophages play an integral role in the pathogenesis of fibrosis induced by asbestos (asbestosis), in part by generating reactive oxygen species (ROS) and promoting resistance to apoptosis. However, the mechanism by which macrophages acquire apoptosis resistance is not known. Here, we confirm that macrophages isolated from asbestosis subjects are resistant to apoptosis and show they are associated with enhanced mitochondrial content of NADPH oxidase 4 (NOX4), which generates mitochondrial ROS generation. Similar results were seen in chrysotile-exposed WT mice, while macrophages from Nox4-/- mice showed increased apoptosis. NOX4 regulated apoptosis resistance by activating Akt1-mediated Bcl-2-associated death phosphorylation. Demonstrating the importance of NOX4-mediated apoptosis resistance in fibrotic remodeling, mice harboring a conditional deletion of Nox4 in monocyte-derived macrophages exhibited increased apoptosis and were protected from pulmonary fibrosis. Moreover, resolution occurred when Nox4 was deleted in monocyte-derived macrophages in mice with established fibrosis. These observations suggest that NOX4 regulates apoptosis resistance in monocyte-derived macrophages and contributes to the pathogenesis of pulmonary fibrosis. Targeting NOX4-mediated apoptosis resistance in monocyte-derived macrophages may provide a novel therapeutic target to protect against the development and/or progression of pulmonary fibrosis.


Assuntos
Apoptose , Progressão da Doença , Fibrose Pulmonar Idiopática/enzimologia , Fibrose Pulmonar Idiopática/patologia , Macrófagos/enzimologia , Macrófagos/patologia , NADPH Oxidase 4/metabolismo , Animais , Linhagem Celular , Feminino , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Modelos Biológicos , Monócitos/metabolismo , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Proteína de Morte Celular Associada a bcl/metabolismo
5.
FASEB J ; 35(6): e21675, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34038004

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease associated with mitochondrial oxidative stress. Mitochondrial reactive oxygen species (mtROS) are important for cell homeostasis by regulating mitochondrial dynamics. Here, we show that IPF BAL cells exhibited increased mitochondrial biogenesis that is, in part, due to increased nuclear expression of peroxisome proliferator-activated receptor-É£ (PPARÉ£) coactivator (PGC)-1α. Increased PPARGC1A mRNA expression directly correlated with reduced pulmonary function in IPF subjects. Oxidant-mediated activation of the p38 MAPK via Akt1 regulated PGC-1α activation to increase mitochondrial biogenesis in monocyte-derived macrophages. Demonstrating the importance of PGC-1α in fibrotic repair, mice harboring a conditional deletion of Ppargc1a in monocyte-derived macrophages or mice administered a chemical inhibitor of mitochondrial division had reduced biogenesis and increased apoptosis, and the mice were protected from pulmonary fibrosis. These observations suggest that Akt1-mediated regulation of PGC-1α maintains mitochondrial homeostasis in monocyte-derived macrophages to induce apoptosis resistance, which contributes to the pathogenesis of pulmonary fibrosis.


Assuntos
Macrófagos Alveolares/patologia , Mitocôndrias/patologia , Dinâmica Mitocondrial , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Processamento de Proteína Pós-Traducional , Fibrose Pulmonar/patologia , Adolescente , Adulto , Idoso , Animais , Apoptose , Feminino , Homeostase , Humanos , Macrófagos Alveolares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/química , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Fosforilação , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Adulto Jovem
6.
J Biol Chem ; 295(46): 15754-15766, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32917723

RESUMO

Heavy metals released into the environment have a significant effect on respiratory health. Lung macrophages are important in mounting an inflammatory response to injury, but they are also involved in repair of injury. Macrophages develop mixed phenotypes in complex pathological conditions and polarize to a predominant phenotype depending on the duration and stage of injury and/or repair. Little is known about the reprogramming required for lung macrophages to switch between these divergent functions; therefore, understanding the mechanism(s) by which macrophages promote metabolic reprogramming to regulate lung injury is essential. Here, we show that lung macrophages polarize to a pro-inflammatory, classically activated phenotype after cadmium-mediated lung injury. Because metabolic adaptation provides energy for the diverse macrophage functions, these classically activated macrophages show metabolic reprogramming to glycolysis. RNA-Seq revealed up-regulation of glycolytic enzymes and transcription factors regulating glycolytic flux in lung macrophages from cadmium-exposed mice. Moreover, cadmium exposure promoted increased macrophage glycolytic function with enhanced extracellular acidification rate, glycolytic metabolites, and lactate excretion. These observations suggest that cadmium mediates the persistence of classically activated lung macrophages to exacerbate lung injury.


Assuntos
Cádmio/toxicidade , Lesão Pulmonar/etiologia , Macrófagos/metabolismo , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Cádmio/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Lipopolissacarídeos/farmacologia , Lesão Pulmonar/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
8.
Am J Respir Crit Care Med ; 198(10): 1288-1301, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29897791

RESUMO

RATIONALE: Cigarette smoking is prevalent in the United States and is the leading cause of preventable diseases. A prominent complication of smoking is an increase in lower respiratory tract infections (LRTIs). Although LRTIs are known to be increased in subjects that smoke, the mechanism(s) by which this occurs is poorly understood. OBJECTIVES: Determine how cigarette smoke (CS) reduces reactive oxygen species (ROS) production by the phagocytic NOX2 (NADPH oxidase 2), which is essential for innate immunity in lung macrophages. METHODS: NOX2-derived ROS and Rac2 (Ras-related C3 botulinum toxin substrate 2) activity were determined in BAL cells from wild-type and Rac2-/- mice exposed to CS or cadmium and in BAL cells from subjects that smoke. Host defense to respiratory pathogens was analyzed in mice infected with Streptococcus pneumoniae. MEASUREMENTS AND MAIN RESULTS: NOX2-derived ROS in BAL cells was reduced in mice exposed to CS via inhibition of the small GTPase Rac2. These mice had greater bacterial burden and increased mortality compared with air-exposed mice. BAL fluid from CS-exposed mice had increased levels of cadmium, which mediated the effect on Rac2. Similar observations were seen in human subjects that smoke. To support the importance of Rac2 in the macrophage immune response, overexpression of constitutively active Rac2 by lentiviral administration increased NOX2-derived ROS, decreased bacterial burden in lung tissue, and increased survival compared with CS-exposed control mice. CONCLUSIONS: These observations suggest that therapies to maintain Rac2 activity in lung macrophages restore host defense against respiratory pathogens and diminish the prevalence of LRTIs in subjects that smoke.


Assuntos
Fumar Cigarros/efeitos adversos , Fumar Cigarros/imunologia , Pneumonia/etiologia , Pneumonia/imunologia , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/imunologia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Imunidade Inata/imunologia , Pulmão/imunologia , Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Espécies Reativas de Oxigênio/imunologia , Índice de Gravidade de Doença , Proteína RAC2 de Ligação ao GTP
9.
J Biol Chem ; 292(7): 3029-3038, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28049732

RESUMO

Mitochondrial bioenergetics are critical for cellular homeostasis and stress responses. The reactive oxygen species-generating enzyme, NADPH oxidase 4 (Nox4), regulates a number of physiological and pathological processes, including cellular differentiation, host defense, and tissue fibrosis. In this study we explored the role of constitutive Nox4 activity in regulating mitochondrial function. An increase in mitochondrial oxygen consumption and reserve capacity was observed in murine and human lung fibroblasts with genetic deficiency (or silencing) of Nox4. Inhibition of Nox4 expression/activity by genetic or pharmacological approaches resulted in stimulation of mitochondrial biogenesis, as evidenced by elevated mitochondrial-to-nuclear DNA ratio and increased expression of the mitochondrial markers transcription factor A (TFAM), citrate synthase, voltage-dependent anion channel (VDAC), and cytochrome c oxidase subunit 4 (COX IV). Induction of mitochondrial biogenesis was dependent on TFAM up-regulation but was independent of the activation of the peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α). The enhancement of mitochondrial bioenergetics as well as the increase in mitochondrial proteins in Nox4-deficient lung fibroblasts is inhibited by silencing of nuclear factor erythroid-derived 2-like 2 (Nrf2), supporting a key role for Nrf2 in control of mitochondrial biogenesis. Together, these results indicate a critical role for both Nox4 and Nrf2 in counter-regulation of mitochondrial biogenesis and metabolism.


Assuntos
Pulmão/metabolismo , NADPH Oxidases/fisiologia , Fator 2 Relacionado a NF-E2/metabolismo , Biogênese de Organelas , Animais , Proteínas de Ligação a DNA/genética , Metabolismo Energético , Inativação Gênica , Proteínas de Grupo de Alta Mobilidade/genética , Humanos , Pulmão/citologia , Camundongos , Camundongos Knockout , NADPH Oxidase 4 , NADPH Oxidases/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , RNA Mensageiro/genética
10.
FASEB J ; 31(7): 3072-3083, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28351840

RESUMO

Fibrosis in multiple organs, including the liver, kidney, and lung, often occurs secondary to environmental exposure. Asbestos exposure is one important environmental cause of lung fibrosis. The mechanisms that mediate fibrosis is not fully understood, although mitochondrial oxidative stress in alveolar macrophages is critical for fibrosis development. Mitochondrial Ca2+ levels can be associated with production of reactive oxygen species. Here, we show that patients with asbestosis have higher levels of mitochondrial Ca2+ compared with normal patients. The mitochondrial calcium uniporter (MCU) is a highly selective ion channel that transports Ca2+ into the mitochondrial matrix to modulate metabolism. Asbestos exposure increased mitochondrial Ca2+ influx in alveolar macrophages from wild-type, but not MCU+/-, mice. MCU expression polarized macrophages to a profibrotic phenotype after exposure to asbestos, and the profibrotic polarization was regulated by MCU-mediated ATP production. Profibrotic polarization was abrogated when MCU was absent or its activity was blocked. Of more importance, mice that were deficient in MCU were protected from pulmonary fibrosis. Regulation of mitochondrial Ca2+ suggests that MCU may play a pivotal role in the development of fibrosis and could potentially be a therapeutic target for pulmonary fibrosis.-Gu, L., Larson-Casey, J. L., Carter, A. B. Macrophages utilize the mitochondrial calcium uniporter for profibrotic polarization.


Assuntos
Asbestose/metabolismo , Canais de Cálcio/metabolismo , Regulação da Expressão Gênica/fisiologia , Macrófagos/fisiologia , Adolescente , Adulto , Animais , Cálcio/metabolismo , Canais de Cálcio/genética , Haplótipos , Humanos , Camundongos , Pessoa de Meia-Idade , Fibrose Pulmonar , Espécies Reativas de Oxigênio , Adulto Jovem
11.
13.
Am J Respir Cell Mol Biol ; 55(1): 58-71, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26699812

RESUMO

M2 macrophages are implicated in the development of pulmonary fibrosis as they generate profibrotic signals. The polarization process, at least in part, is regulated by epigenetic modulation. Because Cu,Zn-superoxide dismutase-induced H2O2 can polarize macrophages to a profibrotic M2 phenotype, we hypothesized that modulation of the redox state of the cell is involved in the epigenetic modulation of the macrophage phenotype. In this study, we show that signal transducer and activator of transcription 6 (STAT6) regulates Jumonji domain containing (Jmjd) 3, a histone H3 lysine 27 demethylase, and mutation of a redox-sensitive cysteine in STAT6 attenuates jmjd3 expression. Moreover, Jmjd3 deficiency abrogates profibrotic M2 gene expression. Treatment with leflunomide, which reduces mitochondrial reactive oxygen species production and tyrosine phosphorylation, inhibits jmjd3 expression and M2 polarization, as well as development of a fibrotic phenotype. Taken together, these observations provide evidence that the redox regulation of Jmjd3 is a unique regulatory mechanism for Cu,Zn-superoxide dismutase-mediated profibrotic M2 polarization. Furthermore, leflunomide, which reduces reactive oxygen species production and tyrosine phosphorylation, may prove to be therapeutic in the treatment of asbestos-induced pulmonary fibrosis.


Assuntos
Polaridade Celular , Histona Desmetilases com o Domínio Jumonji/metabolismo , Macrófagos/patologia , Superóxido Dismutase-1/metabolismo , Animais , Linhagem Celular , Polaridade Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-4/metabolismo , Isoxazóis/farmacologia , Histona Desmetilases com o Domínio Jumonji/genética , Leflunomida , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/genética , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Fibrose Pulmonar/prevenção & controle , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT6/deficiência , Fator de Transcrição STAT6/metabolismo
14.
Am J Physiol Lung Cell Mol Physiol ; 310(1): L86-94, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26545899

RESUMO

The calcium and calmodulin-dependent kinase II (CaMKII) translates increases in intracellular Ca(2+) into downstream signaling events. Its function in pulmonary pathologies remains largely unknown. CaMKII is a well-known mediator of apoptosis and regulator of endoplasmic reticulum (ER) Ca(2+). ER stress and apoptosis of type II pneumocytes lead to aberrant tissue repair and progressive collagen deposition in pulmonary fibrosis. Thus we hypothesized that CaMKII inhibition alleviates fibrosis in response to bleomycin by attenuating apoptosis and ER stress of type II pneumocytes. We first established that CaMKII was strongly expressed in the distal respiratory epithelium, in particular in surfactant protein-C-positive type II pneumocytes, and activated after bleomycin instillation. We generated a novel transgenic model of inducible expression of the CaMKII inhibitor peptide AC3-I limited to type II pneumocytes (Tg SPC-AC3-I). Tg SPC-AC3-I mice were protected from development of pulmonary fibrosis after bleomycin exposure compared with wild-type mice. CaMKII inhibition also provided protection from apoptosis in type II pneumocytes in vitro and in vivo. Moreover, intracellular Ca(2+) levels and ER stress were increased by bleomycin and significantly blunted with CaMKII inhibition in vitro. These data demonstrate that CaMKII inhibition prevents type II pneumocyte apoptosis and development of pulmonary fibrosis in response to bleomycin. CaMKII inhibition may therefore be a promising approach to prevent or ameliorate the progression of pulmonary fibrosis.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Bleomicina/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Cálcio/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Fibrose Pulmonar/tratamento farmacológico , Células Epiteliais Alveolares/metabolismo , Animais , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/fisiologia , Camundongos Transgênicos , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia
15.
FASEB J ; 29(8): 3527-36, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25953850

RESUMO

Alternative activation of alveolar macrophages is linked to fibrosis following exposure to asbestos. The scavenger receptor, macrophage receptor with collagenous structure (MARCO), provides innate immune defense against inhaled particles and pathogens; however, a receptor for asbestos has not been identified. We hypothesized that MARCO acts as an initial signaling receptor for asbestos, polarizes macrophages to a profibrotic M2 phenotype, and is required for the development of asbestos-induced fibrosis. Compared with normal subjects, alveolar macrophages isolated from patients with asbestosis express higher amounts of MARCO and have greater profibrotic polarization. Arginase 1 (40-fold) and IL-10 (265-fold) were higher in patients. In vivo, the genetic deletion of MARCO attenuated the profibrotic environment and pulmonary fibrosis in mice exposed to chrysotile. Moreover, alveolar macrophages from MARCO(-/-) mice polarize to an M1 phenotype, whereas wild-type mice have higher Ym1 (>3.0-fold) and nearly 7-fold more active TGF-ß1 in bronchoalveolar lavage (BAL) fluid (BALF). Arg(432) and Arg(434) in domain V of MARCO are required for the polarization of macrophages to a profibrotic phenotype as mutation of these residues reduced FIZZ1 expression (17-fold) compared with cells expressing MARCO. These observations demonstrate that a macrophage membrane protein regulates the fibrotic response to lung injury and suggest a novel target for therapeutic intervention.


Assuntos
Macrófagos/metabolismo , Macrófagos/patologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Receptores Depuradores/metabolismo , Animais , Arginase/metabolismo , Asbestos Serpentinas/metabolismo , Líquido da Lavagem Broncoalveolar , Linhagem Celular , Humanos , Interleucina-10/metabolismo , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator de Crescimento Transformador beta1/metabolismo
17.
Am J Respir Cell Mol Biol ; 52(1): 106-15, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24988374

RESUMO

Asthma is a disease of acute and chronic inflammation in which cytokines play a critical role in orchestrating the allergic inflammatory response. IL-13 and transforming growth factor (TGF)-ß promote fibrotic airway remodeling, a major contributor to disease severity. Improved understanding is needed, because current therapies are inadequate for suppressing development of airway fibrosis. IL-13 is known to stimulate respiratory epithelial cells to produce TGF-ß, but the mechanism through which this occurs is unknown. Here, we tested the hypothesis that reactive oxygen species (ROS) are a critical signaling intermediary between IL-13 or allergen stimulation and TGF-ß-dependent airway remodeling. We used cultured human bronchial epithelial cells and an in vivo mouse model of allergic asthma to map a pathway where allergens enhanced mitochondrial ROS, which is an essential upstream signal for TGF-ß activation and enhanced collagen production and deposition in airway fibroblasts. We show that mitochondria in airway epithelium are an essential source of ROS that activate TGF-ß expression and activity. TGF-ß from airway epithelium stimulates collagen expression in fibroblasts, contributing to an early fibrotic response to allergen exposure in cultured human airway cells and in ovalbumin-challenged mice. Treatment with the mitochondrial-targeted antioxidant, (2-(2,2,6,6-Tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium chloride (mitoTEMPO), significantly attenuated mitochondrial ROS, TGF-ß, and collagen deposition in OVA-challenged mice and in cultured human epithelial cells. Our findings suggest that mitochondria are a critical source of ROS for promoting TGF-ß activity that contributes to airway remodeling in allergic asthma. Mitochondrial-targeted antioxidants may be a novel approach for future asthma therapies.


Assuntos
Antioxidantes/farmacologia , Asma/tratamento farmacológico , Asma/metabolismo , Colágeno/biossíntese , Mitocôndrias/metabolismo , Compostos Organofosforados/farmacologia , Piperidinas/farmacologia , Fator de Crescimento Transformador beta/biossíntese , Animais , Asma/induzido quimicamente , Asma/genética , Asma/patologia , Células Cultivadas , Colágeno/genética , Modelos Animais de Doenças , Humanos , Interleucina-13/metabolismo , Camundongos , Camundongos Transgênicos , Mitocôndrias/patologia , Espécies Reativas de Oxigênio/metabolismo , Fator de Crescimento Transformador beta/genética
18.
J Biol Chem ; 289(52): 36204-19, 2014 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-25378391

RESUMO

Protein kinase B (Akt) is a key effector of multiple cellular processes, including cell survival. Akt, a serine/threonine kinase, is known to increase cell survival by regulation of the intrinsic pathway for apoptosis. In this study, we found that Akt modulated the mevalonate pathway, which is also linked to cell survival, by increasing Rho GTPase activation. Akt modulated the pathway by phosphorylating mevalonate diphosphate decarboxylase (MDD) at Ser(96). This phosphorylation in macrophages increased activation of Rac1, which enhanced macrophage survival because mutation of MDD (MDDS96A) induced apoptosis. Akt-mediated activation in macrophages was specific for Rac1 because Akt did not increase activity of other Rho GTP-binding proteins. The relationship between Akt and Rac1 was biologically relevant because Akt(+/-) mice had significantly less active Rac1 in alveolar macrophages, and macrophages from Akt(+/-) mice had an increase in active caspase-9 and -3. More importantly, Akt(+/-) mice were significantly protected from the development of pulmonary fibrosis, suggesting that macrophage survival is associated with the fibrotic phenotype. These observations for the first time suggest that Akt plays a critical role in the development and progression of pulmonary fibrosis by enhancing macrophage survival via modulation of the mevalonate pathway.


Assuntos
Macrófagos Alveolares/fisiologia , Ácido Mevalônico/metabolismo , Proteínas Proto-Oncogênicas c-akt/fisiologia , Fibrose Pulmonar/enzimologia , Sequência de Aminoácidos , Animais , Vias Biossintéticas , Polaridade Celular , Sobrevivência Celular , Células Cultivadas , Ativação Enzimática , Humanos , Peróxido de Hidrogênio/metabolismo , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Neuropeptídeos/metabolismo , Estresse Oxidativo , Fosforilação , Processamento de Proteína Pós-Traducional , Fibrose Pulmonar/imunologia , Fator de Crescimento Transformador beta1/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
19.
J Biol Chem ; 289(48): 33391-403, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25324550

RESUMO

Although the mechanisms for fibrosis development remain largely unknown, recent evidence indicates that endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) may act as an important fibrotic stimulus in diseased lungs. ER stress is observed in lungs of patients with idiopathic pulmonary fibrosis. In this study we evaluated if ER stress and the UPR was present in macrophages exposed to chrysotile asbestos and if ER stress in macrophages was associated with asbestos-induced pulmonary fibrosis. Macrophages exposed to chrysotile had elevated transcript levels of several ER stress genes. Macrophages loaded with the Ca(2+)-sensitive dye Fura2-AM showed that cytosolic Ca(2+) increased significantly within minutes after chrysotile exposure and remained elevated for a prolonged time. Chrysotile-induced increases in cytosolic Ca(2+) were partially inhibited by either anisomycin, an inhibitor of passive Ca(2+) leak from the ER, or 1,2-bis(2-aminophenoxyl)ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM), an intracellular Ca(2+) chelator known to deplete ER Ca(2+) stores. Anisomycin inhibited X-box-binding protein 1 (XBP1) mRNA splicing and reduced immunoglobulin-binding protein (BiP) levels, whereas BAPTA-AM increased XBP1 splicing and BiP expression, suggesting that ER calcium depletion may be one factor contributing to ER stress in cells exposed to chrysotile. To evaluate ER stress in vivo, asbestos-exposed mice showed fibrosis development, and alveolar macrophages from fibrotic mice showed increased expression of BiP. Bronchoalveolar macrophages from asbestosis patients showed increased expression of several ER stress genes compared with normal subjects. These findings suggest that alveolar macrophages undergo ER stress, which is associated with fibrosis development.


Assuntos
Asbestos Serpentinas/toxicidade , Asbestose/metabolismo , Cálcio/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Fibrose Pulmonar/metabolismo , Adolescente , Adulto , Animais , Asbestose/patologia , Proteínas de Ligação a DNA/metabolismo , Feminino , Humanos , Macrófagos Alveolares/patologia , Masculino , Camundongos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Splicing de RNA/efeitos dos fármacos , Fatores de Transcrição de Fator Regulador X , Fatores de Transcrição/metabolismo , Proteína 1 de Ligação a X-Box
20.
Am J Physiol Lung Cell Mol Physiol ; 309(3): L280-92, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26071551

RESUMO

Pulmonary exposure to cadmium, a major component of cigarette smoke, has a dramatic impact on lung function and the development of emphysema. Cigarette smoke exposure induces heme oxygenase-1 (HO-1), a cytoprotective enzyme. In this study, we employed a truncated mouse model of emphysema by intratracheal instillation of cadmium (CdCl2) solution (0.025% per 1 mg/kg body wt) in HO-1(+/+), HO-1(-/-), and overexpressing humanized HO-1 bacterial artificial chromosome (hHO-1BAC) mice. We evaluated the role of HO-1 in cadmium-induced emphysema in mice by analyzing histopathology, micro-computed tomography scans, and lung function tests. CdCl2-exposed HO-1(-/-) mice exhibited more severe emphysema compared with HO-1(+/+) or hHO-1BAC mice. Loss of pulmonary endothelial cells (PECs) from the alveolar capillary membrane is recognized to be a target in emphysema. PECs from HO-1(+/+), HO-1(-/-), and hHO-1BAC were employed to define the underlying molecular mechanism for the protection from emphysema by HO-1. Electron microscopy, expression of autophagic markers (microtubule-associated protein 1B-light chain 3 II, autophagy protein 5, and Beclin1) and apoptotic marker (cleaved caspase 3) suggested induction of autophagy and apoptosis in PECs after CdCl2 treatment. CdCl2-treated HO-1(-/-) PECs exhibited downregulation of autophagic markers and significantly increased cleaved caspase 3 expression and activity (∼4-fold higher). Moreover, hHO-1BAC PECs demonstrated upregulated autophagy and absence of cleaved caspase 3 expression or activity. Pretreatment of HO-1(+/+) PECs with rapamycin induced autophagy and resulted in reduced cell death upon cadmium treatment. Induction of autophagy following CdCl2 treatment was found to be protective from apoptotic cell death. HO-1 induced protective autophagy in PECs and mitigated cadmium-induced emphysema.


Assuntos
Autofagia , Células Endoteliais/enzimologia , Heme Oxigenase-1/fisiologia , Pulmão/enzimologia , Proteínas de Membrana/fisiologia , Enfisema Pulmonar/enzimologia , Animais , Cádmio , Células Cultivadas , Pulmão/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Enfisema Pulmonar/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA