RESUMO
The ancestors of marine mammals once roamed the land and independently committed to an aquatic lifestyle. These macroevolutionary transitions have intrigued scientists for centuries. Here, we generated high-quality genome assemblies of 17 marine mammals (11 cetaceans and six pinnipeds), including eight assemblies at the chromosome level. Incorporating previously published data, we reconstructed the marine mammal phylogeny and population histories and identified numerous idiosyncratic and convergent genomic variations that possibly contributed to the transition from land to water in marine mammal lineages. Genes associated with the formation of blubber (NFIA), vascular development (SEMA3E), and heat production by brown adipose tissue (UCP1) had unique changes that may contribute to marine mammal thermoregulation. We also observed many lineage-specific changes in the marine mammals, including genes associated with deep diving and navigation. Our study advances understanding of the timing, pattern, and molecular changes associated with the evolution of mammalian lineages adapting to aquatic life.
Assuntos
Adaptação Fisiológica , Evolução Molecular , Genoma , Genômica , Mamíferos/fisiologia , Filogenia , Termogênese/genética , Animais , Fatores de Transcrição NFI/genética , Fatores de Transcrição NFI/metabolismo , Seleção Genética , Semaforinas/genética , Semaforinas/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismoRESUMO
Version 2 [...].
Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , COVID-19 , SARS-CoV-2 , Humanos , COVID-19/virologia , Antivirais/farmacologia , Antivirais/uso terapêuticoRESUMO
We describe the antioxidant capability of scavenging the superoxide radical of several tea and yerba mate samples using rotating ring-disk electrochemistry (RRDE). We directly measured superoxide concentrations and detected their decrease upon the addition of an antioxidant to the electrochemical cell. We studied two varieties of yerba mate, two varieties of black tea from Bangladesh, a sample of Pu-erh tea from China, and two components, caffeic acid and chlorogenic acid. All of these plant infusions and components showed strong antioxidant activities, virtually annihilating the available superoxide concentration. Using density functional theory (DFT) calculations, we describe a mechanism of superoxide scavenging via caffeic and chlorogenic acids. Superoxide can initially interact at two sites in these acids: the H4 catechol hydrogen (a) or the acidic proton of the acid (b). For (a), caffeic acid needs an additional π-π superoxide radical, which transfers electron density to the ring and forms a HO2- anion. A second caffeic acid proton and HO2- anion forms H2O2. Chlorogenic acid acts differently, as the initial approach of superoxide to the catechol moiety (a) is enough to form the HO2- anion. After an additional acidic proton of chlorogenic acid is given to HO2-, three well-separated compounds arise: (1) a carboxylate moiety, (2) H2O2, and a (3) chlorogenic acid semiquinone. The latter can capture a second superoxide in a π-π manner, which remains trapped due to the aromatic ring, as for caffeic acid. With enough of both acids and superoxide radicals, the final products are equivalent: H2O2 plus a complex of the type [X-acid-η-O2], X = caffeic, chlorogenic. Chlorogenic acid (b) is described by the following reaction: 2 O2â¢- + 2 chlorogenic acid â 2 chlorogenic carboxylate + O2 + H2O2, and so, it acts as a non-enzymatic superoxide dismutase (SOD) mimic, as shown via the product formation of O2 plus H2O2, which is limited due to chlorogenic acid consumption. Caffeic acid (b) differs from chlorogenic acid, as there is no acidic proton capture via superoxide. In this case, approaching a second superoxide to the H4 polyphenol moiety forms a HO2- anion and, later, an H2O2 molecule upon the transfer of a second caffeic acid proton.
Assuntos
Antioxidantes , Ácidos Cafeicos , Camellia sinensis , Ácido Clorogênico , Ilex paraguariensis , Superóxidos , Superóxidos/química , Superóxidos/metabolismo , Ácidos Cafeicos/química , Ácido Clorogênico/química , Ilex paraguariensis/química , Antioxidantes/química , Camellia sinensis/química , Teoria da Densidade Funcional , Sequestradores de Radicais Livres/química , Técnicas Eletroquímicas , Extratos Vegetais/químicaRESUMO
BACKGROUND: Nipple-sparing mastectomies (NSMs) and implant-based breast reconstructions have evolved from 2-stage reconstructions with tissue expansion and implant exchange to direct-to-implant procedures. In this study, we tested safety and efficacy of polyurethane-based implants according to standard assessment tools. OBJECTIVES: This study aimed to test safety and feasibility of polyurethane-coated implants with standardized assessment employing internationally acknowledged evaluation criteria. METHODS: Cases of NSMs followed by breast reconstruction in 1 stage with immediate prepectoral polyurethane-coated implant placement were retrospectively reviewed. Preoperative characteristics of the population have been collected. Adherence to quality assurance criteria of the Association of Breast Surgery-British Association of Plastic Reconstructive and Aesthetic Surgeons was verified. Complications were assessed with the Clavien Dindo classification, modified for the breast. Rippling, implant rotation, and malposition were also evaluated. RESULTS: Sixty-three consecutive patients underwent 74 NSMs and immediate breast reconstruction with micro polyurethane foam-coated anatomic implants. In 5 cases we had unplanned readmissions with return to the operating room under general anesthesia (6.7%) and implant loss within 3 months from breast reconstruction (5 implants, 6.7%). Postoperative complications according to Clavien Dindo were grade 1 in 6 cases (8.1%), grade 2 in 3 cases (4%), and 3b in 5 cases (6.7%). CONCLUSIONS: Polyurethane-coated implants may prevent rotation and malposition and capsular contracture in the short term. Unplanned readmission rates and implant loss rates in the short term may be slightly higher.See the abstract translated into Hindi, Portuguese, Korean, German, Italian, Arabic, Chinese, and Taiwanese online here: https://doi.org/10.1093/asj/sjad301.
Assuntos
Implante Mamário , Implantes de Mama , Neoplasias da Mama , Mamoplastia , Humanos , Feminino , Implantes de Mama/efeitos adversos , Implante Mamário/efeitos adversos , Implante Mamário/métodos , Estudos Retrospectivos , Poliuretanos , Mamoplastia/efeitos adversos , Mamoplastia/métodos , Neoplasias da Mama/cirurgiaRESUMO
The echolocation clicks of free-ranging Indo-Pacific finless porpoises (IPFPs, Neophocaena phocaenoides) have been rarely studied in the wild. This paper aims at describing the echolocation-click characteristics of IPFPs and examining whether IPFPs adapt their sonar system to the habitats in Hainan waters, China. The echolocation clicks were recorded using a 13 elements star-shaped array of hydrophones. A total of 65 on-axis clicks were identified and analyzed. IPFPs use echolocation clicks with a source level (SL) of 158 ± 9 dB re: 1 µPa peak-peak, mean peak, and centroid frequency of 134 ± 3 kHz, -3 dB bandwidth of 14 ± 2 kHz and produce at inter-click intervals of 104 ± 51 ms. The results relative to other porpoises show that finless porpoises in Hainan waters produce clicks with moderate SLs and high peak frequency. These results could be useful in detecting the presence and estimating the density of IPFPs during passive acoustic monitoring in the study area and serve to shed light on the interpopulation variation of click characteristics of finless porpoises as well.
Assuntos
Ecolocação , Toninhas , Animais , Som , ChinaRESUMO
Isoflavones are plant-derived natural products commonly found in legumes that show a large spectrum of biomedical activities. A common antidiabetic remedy in traditional Chinese medicine, Astragalus trimestris L. contains the isoflavone formononetin (FMNT). Literature reports show that FMNT can increase insulin sensitivity and potentially target the peroxisome proliferator-activated receptor gamma, PPARγ, as a partial agonist. PPARγ is highly relevant for diabetes control and plays a major role in Type 2 diabetes mellitus development. In this study, we evaluate the biological role of FMNT, and three related isoflavones, genistein, daidzein and biochanin A, using several computational and experimental procedures. Our results reveal the FMNT X-ray crystal structure has strong intermolecular hydrogen bonding and stacking interactions which are useful for antioxidant action. Cyclovoltammetry rotating ring disk electrode (RRDE) measurements show that all four isoflavones behave in a similar manner when scavenging the superoxide radical. DFT calculations conclude that antioxidant activity is based on the familiar superoxide σ-scavenging mode involving hydrogen capture of ring-A H7(hydroxyl) as well as the π-π (polyphenol-superoxide) scavenging activity. These results suggest the possibility of their mimicking superoxide dismutase (SOD) action and help explain the ability of natural polyphenols to assist in lowering superoxide concentrations. The SOD metalloenzymes all dismutate O2â¢- to H2O2 plus O2 through metal ion redox chemistry whereas these polyphenolic compounds do so through suitable hydrogen bonding and stacking intermolecular interactions. Additionally, docking calculations suggest FMNT can be a partial agonist of the PPARγ domain. Overall, our work confirms the efficacy in combining multidisciplinary approaches to provide insight into the mechanism of action of small molecule polyphenol antioxidants. Our findings promote the further exploration of other natural products, including those known to be effective in traditional Chinese medicine for potential drug design in diabetes research.
Assuntos
Produtos Biológicos , Isoflavonas , Superóxido Dismutase , Humanos , Antioxidantes/química , Produtos Biológicos/química , Diabetes Mellitus Tipo 2 , Peróxido de Hidrogênio , Isoflavonas/química , PPAR gama/química , Superóxido Dismutase/química , Superóxidos/químicaRESUMO
The relationship between oxidative stress and inflammation is well known, and exogenous antioxidants, primarily phytochemical natural products, may assist the body's endogenous defense systems in preventing diseases due to excessive inflammation. In this study, we evaluated the antioxidant properties of ethnomedicines from Peru that exhibit anti-inflammatory activity by measuring the superoxide scavenging activity of ethanol extracts of Maytenus octogona aerial parts using hydrodynamic voltammetry at a rotating ring-disk electrode (RRDE). The chemical compositions of these extracts are known and the interactions of three methide-quinone compounds found in Maytenus octogona with caspase-1 were analyzed using computational docking studies. Caspase-1 is a critical enzyme triggered during the activation of the inflammasome and its actions are associated with excessive release of cytokines. The most important amino acid involved in active site caspase-1 inhibition is Arg341 and, through docking calculations, we see that this amino acid is stabilized by interactions with the three potential methide-quinone Maytenus octogona inhibitors, hydroxytingenone, tingenone, and pristimerin. These findings were also confirmed after more rigorous molecular dynamics calculations. It is worth noting that, in these three compounds, the methide-quinone carbonyl oxygen is the preferred hydrogen bond acceptor site, although tingenone's other carbonyl group also shows a similar binding energy preference. The results of these calculations and cyclovoltammetry studies support the effectiveness and use of anti-inflammatory ethnopharmacological ethanol extract of Maytenus octogona (L'Héritier) DC.
Assuntos
Maytenus , Superóxidos , Maytenus/química , Caspase 1 , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antioxidantes/farmacologia , Quinonas , Anti-Inflamatórios/farmacologia , Inflamação , EtanolRESUMO
Photodynamic therapy (PDT) is an anticancer/antibacterial strategy in which photosensitizers (PSs), light, and molecular oxygen generate reactive oxygen species and induce cell death. PDT presents greater selectivity towards tumor cells than conventional chemotherapy; however, PSs have limitations that have prompted the search for new molecules featuring more favorable chemical-physical characteristics. Curcumin and its derivatives have been used in PDT. However, low water solubility, rapid metabolism, interference with other drugs, and low stability limit curcumin use. Chemical modifications have been proposed to improve curcumin activity, and metal-based PSs, especially ruthenium(II) complexes, have attracted considerable attention. This study aimed to characterize six Ru(II)-arene curcuminoids for anticancer and/or antibacterial PDT. The hydrophilicity, photodegradation rates, and singlet oxygen generation of the compounds were evaluated. The photodynamic effects on human colorectal cancer cell lines were also assessed, along with the ability of the compounds to induce ROS production, apoptotic, necrotic, and/or autophagic cell death. Overall, our encouraging results indicate that the Ru(II)-arene curcuminoid derivatives are worthy of further investigation and could represent an interesting option for cancer PDT. Additionally, the lack of significant in vivo toxicity on the larvae of Galleria mellonella is an important finding. Finally, the photoantimicrobial activity of HCurc I against Gram-positive bacteria is indeed promising.
Assuntos
Antineoplásicos , Complexos de Coordenação , Curcumina , Fotoquimioterapia , Rutênio , Humanos , Fármacos Fotossensibilizantes/química , Rutênio/farmacologia , Rutênio/química , Curcumina/farmacologia , Diarileptanoides , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Antineoplásicos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêuticoRESUMO
Polyphenols are valuable natural antioxidants present in our diet that likely mitigate aging effects, neurodegenerative conditions, and other diseases. However, because of their poor absorption in the gut and consequent low concentration in biological fluids (µM range), reservations about polyphenol antioxidant efficiency have been raised. In this review, it is shown that after scavenging superoxide radicals, coumarin, chalcone, and flavonoid polyphenols can reform themselves, becoming ready for additional cycles of scavenging, similar to the catalytic cycle in superoxide dismutase (SOD) action. The π-π interaction between one polyphenol ring and superoxide is associated with oxidation of the latter due to transfer of its unpaired electron to a polyphenolic aromatic ring, and consequent formation of a molecule of O2 (one product of SOD action). Mechanistically, it is very difficult to establish if this π-π interaction proceeds before or after the most common mode of scavenging superoxide, e.g., abstraction of an aromatic polyphenol H(hydroxyl), which then is used to form H2O2 (the other molecule produced by SOD action). At the end of this cycle of superoxide scavenging, 4-methyl-7,8-di-hydroxy-coumarin and the flavonoid galangin reform themselves. An alternative mechanistic pathway by galangin forms the η-(H2O2)-galangin-η-O2 complex that includes additional H2O2 and O2 molecules. Another mode of action is seen with the chalcone butein, in which the polyphenol system incorporates a molecule of O2, e.g., a η-O2-butein complex is formed, ready for additional scavenging. Of the several families of polyphenols analyzed in this review, only butein was able to circumvent an initial π-π interaction, directing the superoxide towards H(hydroxyl) in position 4, e.g., acting as a typical polyphenol scavenger of superoxide. This fact did not impede an additional superoxide to later react with the aromatic ring in π-π fashion. It is concluded that by mimicking SOD enzyme action, the low concentration of polyphenols in biological fluids is not a limiting factor for effective scavenging of superoxide.
RESUMO
The unprecedented COVID-19 pandemic showed up during the latter part of 2019 in Wuhan, China [...].
Assuntos
COVID-19 , China/epidemiologia , Humanos , Pandemias , SARS-CoV-2RESUMO
The inflammatory protease caspase-1 is associated with the release of cytokines. An excessive number of cytokines (a "cytokine storm") is a dangerous consequence of COVID-19 infection and has been indicated as being among the causes of death by COVID-19. The anti-inflammatory drug colchicine (which is reported in the literature to be a caspase-1 inhibitor) and the corticosteroid drugs, dexamethasone and methylprednisolone, are among the most effective active compounds for COVID-19 treatment. The SERM raloxifene has also been used as a repurposed drug in COVID-19 therapy. In this study, inhibition of caspase-1 by these four compounds was analyzed using computational methods. Our aim was to see if the inhibition of caspase-1, an important biomolecule in the inflammatory response that triggers cytokine release, could shed light on how these drugs help to alleviate excessive cytokine production. We also measured the antioxidant activities of dexamethasone and colchicine when scavenging the superoxide radical using cyclic voltammetry methods. The experimental findings are associated with caspase-1 active site affinity towards these compounds. In evaluating our computational and experimental results, we here formulate a mechanism for caspase-1 inhibition by these drugs, which involves the active site amino acid Cys285 residue and is mediated by a transfer of protons, involving His237 and Ser339. It is proposed that the molecular moiety targeted by all of these drugs is a carbonyl group which establishes a S(Cys285)-C(carbonyl) covalent bond.
Assuntos
Anti-Inflamatórios/farmacologia , Tratamento Farmacológico da COVID-19 , Caspase 1/efeitos dos fármacos , Inibidores de Caspase/farmacologia , Proteases 3C de Coronavírus/efeitos dos fármacos , Anti-Inflamatórios/química , COVID-19/metabolismo , Caspase 1/química , Caspase 1/metabolismo , Inibidores de Caspase/química , Colchicina/química , Colchicina/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Dexametasona/farmacologia , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Triterpenos Pentacíclicos/farmacologia , Domínios e Motivos de Interação entre Proteínas , Cloridrato de Raloxifeno/química , Cloridrato de Raloxifeno/farmacologia , Inibidores de Protease Viral/química , Inibidores de Protease Viral/farmacologiaRESUMO
This paper examines the production technology of Egyptian blue, an ancient artificial pigment, through the investigation of an unsuccessfully produced pellet derived from the Hellenistic production site of Kos (Dodecanese, Greece). This heterogeneous material was investigated by a combination of laboratory and synchrotron radiation-based (SR) techniques: scanning electron microscopy coupled with energy-dispersive X-ray spectrometry, micro-Raman spectroscopy, high-resolution SR micro-X-ray fluorescence spectroscopy, and SR micro-X-ray absorption near-edge structure spectroscopy (XANES), at the ID21 beamline of the European Synchrotron Radiation Facility. Principal component analysis of a large dataset of 171 micro-XANES spectra acquired on the archaeological samples and on a series of reference copper compounds emphasizes high variations of XANES features due to different speciation and also orientation effects, as demonstrated by the simulated XANES spectra. The results indicate that, rather than inadequate firing temperatures that could have led to the reddish cuprite (Cu2O), unsuccessful production may occur due to the use of inappropriate starting materials, which contain an unusually high iron content. The contextual interpretation underlines the intertwined relationship between the production of Egyptian blue and metallurgy.
Assuntos
Cobre , Síncrotrons , Cobre/análise , Grécia , Silicatos , Espectroscopia por Absorção de Raios XRESUMO
Malaria is a huge global health burden with resistance to currently available medicines resulting in the search for newer antimalarial compounds from traditional medicinal plants in malaria-endemic regions. Previous studies on two chalcones, homobutein and 5-prenylbutein, present in E. abyssinica, have shown moderate antiplasmodial activity. Here, we describe results from experimental and computational investigations of four structurally related chalcones, butein, 2',4'-dihydroxy-3,4-dimethoxychalcone (DHDM), homobutein and 5-prenylbutein to elucidate possible molecular mechanisms by which these compounds clear malaria parasites. The crystal structures of butein and DHDM show that butein engages in more hydrogen bonding and consequently, more intermolecular interactions than DHDM. Rotating ring-disk electrode (RRDE) voltammetry results show that butein has a higher antioxidant activity towards the superoxide radical anion compared to DHDM. Computational docking experiments were conducted to examine the inhibitory potential of all four compounds on falcipain-2, a cysteine protease that is involved in the degradation of hemoglobin in plasmodium-infected red blood cells of the host. Overall, this work suggests butein as a better antimalarial compound due to its structural features which allow it to have greater intermolecular interactions, higher antioxidant activity and to create a covalent complex at the active site of falcipain-2.
Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Chalconas/química , Chalconas/farmacologia , Sítios de Ligação , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Relação Dose-Resposta a Droga , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Relação Estrutura-AtividadeRESUMO
Pyroclastic strata have always been thought to protect the archaeological remains of the Vesuvian area (Italy), hence allowing their conservation throughout the centuries. In this work, we demonstrate that they constitute a potential threat for the conservation state of the mural paintings of Pompeii. The ions that could be leached from them and the ion-rich groundwater coming from the volcanic soil/rocks may contribute to salt crystallisation. Thermodynamic modelling not only allowed to predict which salts can precipitate from such leaching events but also assisted the identification of additional sources of sulfates and alkali metals to explain the formation of the sulfates identified in efflorescences from the mural paintings of Pompeii. For the future, fluorine, mainly related to a volcanic origin, can be proposed as a marker to monitor the extent of the impact in the mural paintings of Pompeii inâ situ.
RESUMO
The Indo-Pacific humpback dolphin (IPHD, Sousa chinensis) is a coastal species inhabiting tropical and warm-temperate waters. The presence of this vulnerable dolphin was recently discovered in shallow waters southwest of Hainan Island, China. The influence of the acoustic habitat on the distribution and behavior of IPHD was investigated using an array of passive acoustic platforms (n = 6) that spanned more than 100 km of coastline during a 75-day monitoring period. Its presence was assessed within 19 215 five-min recordings by classifying echolocation clicks using machine learning techniques. Spectrogram analysis was applied to further investigate the acoustic behavior of IPHD and to identify other prominent sound sources. The variation in the ambient noise levels was also measured to describe the spatiotemporal patterns of the acoustic habitat among the different sampling sites. Social and feeding sounds of IPHD (whistles and click-series of pulsed sounds) were identified together with other biological sources (finless porpoise, soniferous fishes, and snapping shrimps) and anthropogenic activities (ship noise, explosions, and sonars). Distribution, acoustic behavior, and habitat use of this nearshore dolphin species were strongly influenced by the abundance of soniferous fishes, and under similar conditions, the species was more acoustically active in locations with lower noise levels.
Assuntos
Golfinhos , Ecolocação , Acústica , Animais , China , EcossistemaRESUMO
We describe the potential anti coronavirus disease 2019 (COVID-19) action of the methide quinone inhibitor, celastrol. The related methide quinone dexamethasone is, so far, among COVID-19 medications perhaps the most effective drug for patients with severe symptoms. We observe a parallel redox biology behavior between the antioxidant action of celastrol when scavenging the superoxide radical, and the adduct formation of celastrol with the main COVID-19 protease. The related molecular mechanism is envisioned using molecular mechanics and dynamics calculations. It proposes a covalent bond between the S(Cys145) amino acid thiolate and the celastrol A ring, assisted by proton transfers by His164 and His41 amino acids, and a π interaction from Met49 to the celastrol B ring. Specifically, celastrol possesses two moieties that are able to independently scavenge the superoxide radical: the carboxylic framework located at ring E, and the methide-quinone ring A. The latter captures the superoxide electron, releasing molecular oxygen, and is the feature of interest that correlates with the mechanism of COVID-19 inhibition. This unusual scavenging of the superoxide radical is described using density functional theory (DFT) methods, and is supported experimentally by cyclic voltammetry and X-ray diffraction.
Assuntos
Proteases 3C de Coronavírus/antagonistas & inibidores , Sequestradores de Radicais Livres/farmacologia , Inibidores de Proteases/farmacologia , SARS-CoV-2/enzimologia , Tripterygium/química , Triterpenos/farmacologia , COVID-19/virologia , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Sequestradores de Radicais Livres/química , Humanos , Modelos Moleculares , Triterpenos Pentacíclicos , Raízes de Plantas/química , Inibidores de Proteases/química , SARS-CoV-2/efeitos dos fármacos , Superóxidos/metabolismo , Triterpenos/química , Tratamento Farmacológico da COVID-19RESUMO
Coumarins are plant-derived secondary metabolites. The crystal structure of three coumarins-bergamottin, osthole and fraxidin-are described and we analyze intermolecular interactions and their role in crystal formation. Bergamottin is a furanocoumarin found in citrus plants, which is a strong inhibitor of the principal human metabolizing enzyme, cytochrome P450 3A4 (CYP3A4). The crystal structure determinations of three coumarins give us the geometrical parameters and reveal the parallel-displaced π-π stacking and hydrogen bonding intermolecular interactions used for molecular assembly in the crystal structure. A quite strong (less than 3.4 Å) stacking interaction of bergamottin appears to be a determining feature that distinguishes it from other coumarins studied in this work. Our DFT computational studies on the three natural products of the same coumarin family docked into the active site of CYP3A4 (PDB 4D78) show different behavior for these coumarins at the active site. When the substrate is bergamottin, the importance of π-π stacking and hydrogen bonding, which can anchor the substrate in place, appears fundamental. In contrast, fraxidin and osthole show carbonyl coordination to iron. Our docking calculations show that the bergamottin tendency towards π-π stacking is important and likely influences its interactions with the heme group of CYP3A4.
Assuntos
Citrus paradisi/metabolismo , Cumarínicos/química , Cumarínicos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Furocumarinas/metabolismo , Domínio Catalítico/fisiologia , Citrus paradisi/química , Cristalografia por Raios X/métodos , Furocumarinas/química , Heme/química , Heme/metabolismo , Humanos , Ligação de HidrogênioRESUMO
Squid are mobile, diverse, ecologically important marine organisms whose behavior and habitat use can have substantial impacts on ecosystems and fisheries. However, as a consequence in part of the inherent challenges of monitoring squid in their natural marine environment, fine-scale behavioral observations of these free-swimming, soft-bodied animals are rare. Bio-logging tags provide an emerging way to remotely study squid behavior in their natural environments. Here, we applied a novel, high-resolution bio-logging tag (ITAG) to seven veined squid, Loligo forbesii, in a controlled experimental environment to quantify their short-term (24 h) behavioral patterns. Tag accelerometer, magnetometer and pressure data were used to develop automated gait classification algorithms based on overall dynamic body acceleration, and a subset of the events were assessed and confirmed using concurrently collected video data. Finning, flapping and jetting gaits were observed, with the low-acceleration finning gaits detected most often. The animals routinely used a finning gait to ascend (climb) and then glide during descent with fins extended in the tank's water column, a possible strategy to improve swimming efficiency for these negatively buoyant animals. Arms- and mantle-first directional swimming were observed in approximately equal proportions, and the squid were slightly but significantly more active at night. These tag-based observations are novel for squid and indicate a more efficient mode of movement than suggested by some previous observations. The combination of sensing, classification and estimation developed and applied here will enable the quantification of squid activity patterns in the wild to provide new biological information, such as in situ identification of behavioral states, temporal patterns, habitat requirements, energy expenditure and interactions of squid through space-time in the wild.
Assuntos
Decapodiformes/fisiologia , Marcha , Natação , Acelerometria/veterinária , Animais , Magnetometria/veterináriaRESUMO
The antiproliferative action of hispolon derivatives is stronger than that of related curcumin against several tumor cell lines. Hispolon size, smaller than curcumin, fits better than curcumin into the active site of HDAC6, an enzyme involved in deacetylation of lysine residues. HDACs are considered potential targets for tumor drug discovery and hydroxamates are known inhibitors of HDACs. One of them, SAHA (Vorinostat) is used in clinical studies. Investigations into possible mechanisms for hispolon derivatives active against the HCT116 colon tumor cell line are done after examining the structural results obtained from hispolon X-ray crystal structures as well as performing associated computational docking and Density Functional Theory techniques on HDAC6. These studies show preference for the HDAC6 active site by chelating the Zn center, in contrast with other ineffective hispolon derivatives, that establish only a single bond to the metal center. Structure activity relationships make clear that hydrogenation of the hispolon bridge also leads to single bond (non chelate) hispolon-Zn binding, and consistently nullifies the antiproliferative action against HCT116 tumor.
Assuntos
Antineoplásicos/farmacologia , Catecóis/farmacologia , Teoria da Densidade Funcional , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Catecóis/síntese química , Catecóis/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-AtividadeRESUMO
Echolocation signals of free-ranging pantropical spotted dolphins (Stenella attenuata) in the western Pacific Ocean have not been studied much. This paper aims to describe the characteristics of echolocation signals of S. attenuata in the northern South China Sea. A six-arm star array with 13 hydrophones was used and a total of 131 on-axis clicks were identified to analyze the acoustic features of the echolocation signals of dolphins. The mean center frequency was 89 ± 13 kHz, with mean peak-to-peak sound source levels of 190 ± 6 dB re: 1 µPa @ 1 m. The mean -3 dB bandwidth and root-mean-square bandwidth were 62 ± 15 kHz and 26 ± 3 kHz, respectively, with mean -10 dB duration of 18 ± 4 µs and root-mean-square duration of 6 ± 2 µs. The results showed that click parameters of S. attenuata in the northern South China Sea are different from those of clicks of the species in Hawaii waters. The differences in click parameters may be due to both behavioral context and/or environmental adaptation of S. attenuata in different habitats.