Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 207(2): 626-639, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34261666

RESUMO

Sepsis is a complex infectious syndrome in which neutrophil participation is crucial for patient survival. Neutrophils quickly sense and eliminate the pathogen by using different effector mechanisms controlled by metabolic processes. The mammalian target of rapamycin (mTOR) pathway is an important route for metabolic regulation, and its role in neutrophil metabolism has not been fully understood yet, especially the importance of mTOR complex 2 (mTORC2) in the neutrophil effector functions. In this study, we observed that the loss of Rictor (mTORC2 scaffold protein) in primary mouse-derived neutrophils affects their chemotaxis by fMLF and their microbial killing capacity, but not the phagocytic capacity. We found that the microbicidal capacity was impaired in Rictor-deleted neutrophils because of an improper fusion of granules, reducing the hypochlorous acid production. The loss of Rictor also led to metabolic alterations in isolated neutrophils, increasing aerobic glycolysis. Finally, myeloid-Rictor-deleted mice (LysMRic Δ/Δ) also showed an impairment of the microbicidal capacity, increasing the bacterial burden in the Escherichia coli sepsis model. Overall, our results highlight the importance of proper mTORC2 activation for neutrophil effector functions and metabolism during sepsis.


Assuntos
Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Neutrófilos/metabolismo , Sepse/metabolismo , Sepse/microbiologia , Animais , Quimiotaxia/fisiologia , Escherichia coli/metabolismo , Feminino , Glicólise/fisiologia , Humanos , Ácido Hipocloroso/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose/fisiologia , Transdução de Sinais/fisiologia
2.
Pharmacol Res ; 173: 105911, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34560251

RESUMO

In melanomas, therapy resistance can arise due to a combination of genetic, epigenetic and phenotypic mechanisms. Due to its crucial role in DNA supercoil relaxation, TOP1 is often considered an essential chemotherapeutic target in cancer. However, how TOP1 expression and activity might differ in therapy sensitive versus resistant cell types is unknown. Here we show that TOP1 expression is increased in metastatic melanoma and correlates with an invasive gene expression signature. More specifically, TOP1 expression is highest in cells with the lowest expression of MITF, a key regulator of melanoma biology. Notably, TOP1 and DNA Single-Strand Break Repair genes are downregulated in BRAFi- and BRAFi/MEKi-resistant cells and TOP1 inhibition decreases invasion markers only in BRAFi/MEKi-resistant cells. Thus, we show three different phenotypes related to TOP1 levels: i) non-malignant cells with low TOP1 levels; ii) metastatic cells with high TOP1 levels and high invasiveness; and iii) BRAFi- and BRAFi/MEKi-resistant cells with low TOP1 levels and high invasiveness. Together, these results highlight the potential role of TOP1 in melanoma progression and resistance.


Assuntos
DNA Topoisomerases Tipo I , Resistencia a Medicamentos Antineoplásicos , Melanoma , Neoplasias Cutâneas , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , Progressão da Doença , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Melanoma/mortalidade , Pessoa de Meia-Idade , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/mortalidade
3.
Biomed Pharmacother ; 177: 116953, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38955087

RESUMO

The second most common mutation in melanoma occurs in NRAS oncogene, being a more aggressive disease that has no effective approved treatment. Besides, cellular plasticity limits better outcomes of the advanced and therapy-resistant patients. Peroxiredoxins (PRDXs) control cellular processes through direct hydrogen peroxide oxidation or by redox-relaying processes. Here, we demonstrated that PRDX2 could act as a modulator of multiple EMT markers in NRAS-mutated melanomas. PRDX2 knockdown lead to phenotypic changes towards invasion in human reconstructed skin and the treatment with a PRDX mimetic (gliotoxin), decreased migration in PRDX2-deficient cells. We also confirmed the favorable clinical outcome of patients expressing PRDX2 in a large primary melanoma cohort. This study contributes to our knowledge about genes involved in phenotype switching and opens a new perspective for PRDX2 as a biomarker and target in NRAS-mutated melanomas.

4.
Antioxidants (Basel) ; 13(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38790661

RESUMO

Microenvironment and transcriptional plasticity generate subpopulations within the tumor, and the use of BRAF inhibitors (BRAFis) contributes to the rise and selection of resistant clones. We stochastically isolated subpopulations (C1, C2, and C3) from naïve melanoma and found that the clones demonstrated distinct morphology, phenotypic, and functional profiles: C1 was less proliferative, more migratory and invasive, less sensitive to BRAFis, less dependent on OXPHOS, more sensitive to oxidative stress, and less pigmented; C2 was more proliferative, less migratory and invasive, more sensitive to BRAFis, less sensitive to oxidative stress, and more pigmented; and C3 was less proliferative, more migratory and invasive, less sensitive to BRAFis, more dependent on OXPHOS, more sensitive to oxidative stress, and more pigmented. Hydrogen peroxide plays a central role in oxidative stress and cell signaling, and PRDXs are one of its main consumers. The intrinsically resistant C1 and C3 clones had lower MITF, PGC-1α, and PRDX1 expression, while C1 had higher AXL and decreased pigmentation markers, linking PRDX1 to clonal heterogeneity and resistance. PRDX2 is depleted in acquired BRAFi-resistant cells and acts as a redox sensor. Our results illustrate that decreased pigmentation markers are related to therapy resistance and decreased antioxidant defense.

5.
São Paulo; s.n; s.n; 2017. 151p ilus, graf, tab.
Tese em Português | LILACS | ID: biblio-849414

RESUMO

O hidroperóxido de urato (HOOU) é o produto da oxidação do ácido úrico por peroxidases. Sua produção é favorecida durante a inflamação e hiperuricemia, uma vez que há grande quantidade de ácido úrico, peroxidases inflamatórias e superóxido. Neste sentido, o objetivo deste estudo foi avaliar o efeito do hidroperóxido de urato sobre proteínas sensíveis à modulação redox em um ambiente inflamatório asséptico e outro que imita infecção. Assim, nesta tese comparou-se a estrutura química do HOOU obtido fotoquimicamente daquele obtido através da catálise enzimática pela mieloperoxidase. A obtenção do HOOU por foto-oxidação permitiu o melhor isolamento do composto. Este oxidante foi capaz de reagir especificamente com os aminoácidos contendo enxofre (metionina e cisteína). Neste sentido, foi investigada sua reatividade com tiol-peroxidases detoxificadoras de peróxido, a peroxiredoxina 1 e 2 (Prx1 e Prx2). O HOOU apresentou cinética rápida de reação com a Prx1, k = 4,9 × 105 M-1s-1 e Prx2, k = 2,3 × 106 M-1s-1, o que as torna um provável alvo celular, além disso, foi capaz de oxidar a Prx2 de eritrócitos humanos, mostrando ser capaz de atravessar a membrana plasmática. Além das Prxs, a albumina do soro também desempenha papel importante na homeostase redox. O HOOU foi capaz de oxidar a albumina com constante de velocidade de 0,2 × 102 M-1s- 1. Outra tiol-proteína com importante função na homeostase e sinalização redox é a tioredoxina (Trx). A Trx foi oxidada pelo HOOU com constante de reação de 2,8 × 102 M-1s-1 e foi liberada juntamente com a Prx1 e Prx2 das células de macrófagos humanos (linhagem THP-1) quando estas células foram incubadas com HOOU. A liberação dessas proteínas é reconhecidamente um sinal de estresse celular. Assim o HOOU pode estar envolvido na exacerbação do estresse oxidativo em ambiente inflamatório. Quando neutrófilos (linhagem HL- 60) e macrófagos humanos (linhagem THP-1) foram incubados na presença de ácido úrico e Pseudomonas aeruginosa houve uma diminuição na produção de ácido hipocloroso (HOCl). Isto se deveu à competição entre ácido úrico e cloreto pela mieloperoxidase e resultou em menor atividade microbicida pelas células, demonstrando que a formação do HOOU não contribui e, ao contrário, prejudica a atividade microbicida das células inflamatórias. Dessa forma, a oxidação do ácido úrico e formação do hidroperóxido de urato tanto altera a atividade microbicida das células inflamtárias, quanto leva à oxidação de tiósproteínas importantes para manutenção da homeostase redox. Assim, o HOOU pode ser o responsável pelos efeitos pró-oxidantes e pró-inflamatórios do ácido úrico solúvel, e isso indica que o papel antioxidante do ácido úrico deve ser revisto em situações de inflamação.


Urate hydroperoxide (HOOU) is the product of the oxidation of uric acid by peroxidases. The formation of HOOU is favored during inflammation and in hyperuricemia, where there is plenty amount of uric acid, inflammatory peroxidases and superoxide. Therefore, the aim of the present study was to evaluate the effect of urate hydroperoxide on redox sensitive proteins in an inflammatory environment and another that mimics infection. In this thesis the chemical structure of the HOOU produced by photo-oxidation was compared to that obtained by myeloperoxidase catalysis. The chemical production of HOOU allowed a better purification of the compound. This oxidant was able to specifically react with sulfur containing amino acids (methionine and cysteine). In this sense, its reactivity with peroxiredoxins (Prx1 and Prx2) was investigated. HOOU reacted fast with Prx1 k = 4.9 × 105 M-1s-1 and Prx2 k = 2.3 × 106 M-1s-1. In addition, HOOU was able to oxidize Prx2 from intact erythrocytes at the same extend as does hydrogen peroxide. Albumin is an important thiol-containing protein to redox homeostasis in plasma. HOOU was able to oxidize albumin with a rate constant of 0.2 × 102 M-1s-1. Another protein with important function in redox homeostasis is thioredoxin (Trx). Trx was oxidized by HOOU with a rate constant of 2.8 × 102 M-1s-1 and was released together with Prx1 and Prx2 from human macrophages cells (THP-1 cell line) that were incubated with HOOU. The release of these proteins is a signal of cellular stress. Thus, HOOU may be involved in the exacerbation of oxidative stress in inflammatory environments. When neutrophil (HL-60 cell line) and macrophages (THP-1 cell line) were incubated with uric acid and Pseudomonas aeruginosa there was a decrease in hypochlorous acid (HOCl) production because of the competition between chloride and uric acid by myeloperoxidase. It decreased HOCl and impaired the microbicidal activity of the cells, showing that HOOU does not contribute in bacteria clearance. Therefore, the oxidation of uric acid to urate hydroperoxide impairs microbicidal activity and oxidizes thiol-proteins in inflammatory cells contributing to a pro-oxidant status. In this context, the antioxidant role of uric acid in inflammatory response should be reviwed.


Assuntos
Humanos , Animais , Masculino , Feminino , Bovinos , Espécies Reativas de Oxigênio/efeitos adversos , Ácido Úrico/efeitos da radiação , Albuminas , Peroxidase , Tiorredoxinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA