RESUMO
We explore the relationship between the quantum state of a compact matter source and of its asymptotic graviton field. For a matter source in an energy eigenstate, the graviton state is determined at leading order by the energy eigenvalue. Insofar as there are no accidental energy degeneracies there is a one to one map between graviton states on the boundary of spacetime and the matter source states. Effective field theory allows us to compute a purely quantum gravitational effect which causes the subleading asymptotic behavior of the graviton state to depend on the internal structure of the source. This establishes the existence of ubiquitous quantum hair due to gravitational effects.
RESUMO
We consider a generalized uncertainty principle (GUP) corresponding to a deformation of the fundamental commutator obtained by adding a term quadratic in the momentum. From this GUP, we compute corrections to the Unruh effect and related Unruh temperature, by first following a heuristic derivation, and then a more standard field theoretic calculation. In the limit of small deformations, we recover the thermal character of the Unruh radiation. Corrections to the temperature at first order in the deforming parameter are compared for the two approaches, and found to be in agreement as for the dependence on the cubic power of the acceleration of the reference frame. The dependence of the shifted temperature on the frequency is also pointed out and discussed.