Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
SLAS Discov ; 27(6): 349-357, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35580766

RESUMO

Small-molecule high-throughput screening (HTS) campaigns have frequently been used to identify lead molecules that can alter expression of disease-relevant proteins in cell-based assays. However, most cell-based HTS assays require short compound exposure periods to avoid toxicity and ensure that compounds are stable in media for the duration of the exposure. This limits the ability of HTS assays to detect inhibitors of the synthesis of target proteins with long half-lives, which can often exceed the exposure times utilized in most HTS campaigns. One such target is alpha-synuclein (α-syn)-a protein well-known for its pathological aggregation in Parkinson's Disease (PD) and other forms of neurodegeneration known collectively as synucleinopathies. Here, we report the development of an HTS assay using a CRISPR-engineered neuroblastoma cell line expressing a destabilized luciferase reporter inserted at the end of the coding region of the SNCA locus. The resultant destabilized fusion protein exhibited a significant reduction in half-life compared to the endogenous, unmodified α-syn protein, and accurately reported reductions in α-syn levels due to known protein translation inhibitors and specific α-syn siRNAs. The robustness and utility of this approach was shown by using the resulting cell line (dsLuc-Syn) to screen a focused library of 3,192 compounds for reduction of α-syn. These data demonstrate the general utility of converting endogenous loci into destabilized reporter genes capable of identifying inhibitors of gene expression of highly stable proteins even in short-term assays.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Linhagem Celular , Expressão Gênica , Ensaios de Triagem em Larga Escala/métodos , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
2.
NanoImpact ; 26: 100401, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35560286

RESUMO

Engineered nanomaterials offer the benefit of having systematically tunable physicochemical characteristics (e.g., size, dimensionality, and surface chemistry) that highly dictate the biological activity of a material. Among the most promising engineered nanomaterials to date are graphene-family nanomaterials (GFNs), which are 2-D nanomaterials (2DNMs) with unique electrical and mechanical properties. Beyond engineering new nanomaterial properties, employing safety-by-design through considering the consequences of cell-material interactions is essential for exploring their applicability in the biomedical realm. In this study, we asked the effect of GFNs on the endothelial barrier function and cellular architecture of vascular endothelial cells. Using micropatterned cell pairs as a reductionist in vitro model of the endothelium, the progression of cytoskeletal reorganization as a function of GFN surface chemistry and time was quantitatively monitored. Here, we show that the surface oxidation of GFNs (graphene, reduced graphene oxide, partially reduced graphene oxide, and graphene oxide) differentially affect the endothelial barrier at multiple scales; from the biochemical pathways that influence the development of cellular protrusions to endothelial barrier integrity. More oxidized GFNs induce higher endothelial permeability and the increased formation of cytoplasmic protrusions such as filopodia. We found that these changes in cytoskeletal organization, along with barrier function, can be potentiated by the effect of GFNs on the Rho/Rho-associated kinase (ROCK) pathway. Specifically, GFNs with higher surface oxidation elicit stronger ROCK2 inhibitory behavior as compared to pristine graphene sheets. Overall, findings from these studies offer a new perspective towards systematically controlling the surface-dependent effects of GFNs on cytoskeletal organization via ROCK2 inhibition, providing insight for implementing safety-by-design principles in GFN manufacturing towards their targeted biomedical applications.


Assuntos
Grafite , Nanoestruturas , Células Endoteliais , Endotélio , Grafite/farmacologia , Nanoestruturas/química
3.
NanoImpact ; 172020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33251378

RESUMO

An increasing number of commercial skincare products are being manufactured with engineered nanomaterials (ENMs), prompting a need to fully understand how ENMs interact with the dermal barrier as a major biodistribution entry route. Although animal studies show that certain nanomaterials can cross the skin barrier, physiological differences between human and animal skin, such as the lack of sweat glands, limit the translational validity of these results. Current optical microscopy methods have limited capabilities to visualize ENMs within human skin tissues due to the high amount of background light scattering caused by the dense, ubiquitous extracellular matrix (ECM) of the skin. Here, we hypothesized that organic solvent-based tissue clearing ("immunolabeling-enabled three-dimensional imaging of solvent-cleared organs", or "iDISCO") would reduce background light scattering from the extracellular matrix of the skin to sufficiently improve imaging contrast for both 2D mapping of unlabeled metal oxide ENMs and 3D mapping of fluorescent nanoparticles. We successfully mapped the 2D distribution of label-free TiO2 and ZnO nanoparticles in cleared skin sections using correlated signals from darkfield, brightfield, and confocal microscopy, as well as micro-spectroscopy. Specifically, hyperspectral microscopy and Raman spectroscopy confirmed the identity of label-free ENMs which we mapped within human skin sections. We also measured the 3D distribution of fluorescently labeled Ag nanoparticles in cleared skin biopsies with wounded epidermal layers using light sheet fluorescence microscopy. Overall, this study explores a novel strategy for quantitatively mapping ENM distributions in cleared ex vivo human skin tissue models using multiple imaging modalities. By improving the imaging contrast, we present label-free 2D ENM tracking and 3D ENM mapping as promising capabilities for nanotoxicology investigations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA