Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 29(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38474438

RESUMO

The design and development of affinity polymeric materials through the use of green technology, such as supercritical carbon dioxide (scCO2), is a rapidly evolving field of research with vast applications across diverse areas, including analytical chemistry, pharmaceuticals, biomedicine, energy, food, and environmental remediation. These affinity polymeric materials are specifically engineered to interact with target molecules, demonstrating high affinity and selectivity. The unique properties of scCO2, which present both liquid- and gas-like properties and an accessible critical point, offer an environmentally-friendly and highly efficient technology for the synthesis and processing of polymers. The design and the synthesis of affinity polymeric materials in scCO2 involve several strategies. Commonly, the incorporation of functional groups or ligands into the polymer matrix allows for selective interactions with target compounds. The choice of monomer type, ligands, and synthesis conditions are key parameters of material performance in terms of both affinity and selectivity. In addition, molecular imprinting allied with co-polymerization and surface modification are commonly used in these strategies, enhancing the materials' performance and versatility. This review aims to provide an overview of the key strategies and recent advancements in the design of affinity polymeric materials using scCO2.

2.
Molecules ; 27(6)2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35335363

RESUMO

Every year, grapevine pruning produces huge amounts of residue, 90% of which are from vine shoots. These are a rich source of natural antioxidants, mostly phenolic compounds, which, when properly extracted, can give rise to added-value products. However, their lack of solubility in aqueous media and high susceptibility to thermal and oxidative degradation highly limit their bioavailability. Encapsulation in suitable carriers may have a positive impact on their bioavailability and bioactivity. Previous data on vine-shoot extraction have identified gallic acid (GA) and resveratrol (RSV) as the main phenolic compounds. In this work, model dry powder formulations (DPFs) of GA and RSV using hydroxypropyl cellulose (HPC) as carriers were developed using Supercritical CO2-Assisted Spray Drying (SASD). A 32 full factorial Design of Experiments investigated the solid and ethanol contents to ascertain process yield, particle size, span, and encapsulation efficiency. Amorphous powder yields above 60%, and encapsulation efficiencies up to 100% were achieved, representing excellent performances. SASD has proven to be an efficient encapsulation technique for these phenolic compounds, preserving their antioxidation potential after three months in storage with average EC50 values of 30.6 µg/mL for GA-DPFs and 149.4 µg/mL for RSV-DPF as assessed by the scavenging capacity of the DPPH radical.


Assuntos
Dióxido de Carbono , Secagem por Atomização , Dessecação , Fenóis/química , Extratos Vegetais/química
3.
Int J Mol Sci ; 23(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35008627

RESUMO

CO2 levels in the atmosphere are increasing exponentially. The current climate change effects motivate an urgent need for new and sustainable materials to capture CO2. Porous materials are particularly interesting for processes that take place near atmospheric pressure. However, materials design should not only consider the morphology, but also the chemical identity of the CO2 sorbent to enhance the affinity towards CO2. Poly(ionic liquid)s (PILs) can enhance CO2 sorption capacity, but tailoring the porosity is still a challenge. Aerogel's properties grant production strategies that ensure a porosity control. In this work, we joined both worlds, PILs and aerogels, to produce a sustainable CO2 sorbent. PIL-chitosan aerogels (AEROPILs) in the form of beads were successfully obtained with high porosity (94.6-97.0%) and surface areas (270-744 m2/g). AEROPILs were applied for the first time as CO2 sorbents. The combination of PILs with chitosan aerogels generally increased the CO2 sorption capability of these materials, being the maximum CO2 capture capacity obtained (0.70 mmol g-1, at 25 °C and 1 bar) for the CHT:P[DADMA]Cl30%AEROPIL.


Assuntos
Dióxido de Carbono/química , Géis/química , Líquidos Iônicos/química , Quitosana/química , Reagentes de Ligações Cruzadas/química , Glutaral/química , Espectroscopia de Ressonância Magnética , Nitrogênio/química , Espectrofotometria Infravermelho
4.
Molecules ; 26(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34946733

RESUMO

Drug delivery systems (DDS) often comprise biopharmaceuticals in aqueous form, making them susceptible to physical and chemical degradation, and therefore requiring low temperature storage in cold supply and distribution chains. Freeze-drying, spray-drying, and spray-freeze-drying are some of the techniques used to convert biopharmaceuticals-loaded DDS from aqueous to solid dosage forms. However, the risk exists that shear and heat stress during processing may provoke DDS damage and efficacy loss. Supercritical fluids (SCF), specifically, supercritical carbon dioxide (scCO2), is a sustainable alternative to common techniques. Due to its moderately critical and tunable properties and thermodynamic behavior, scCO2 has aroused scientific and industrial interest. Therefore, this article reviews scCO2-based techniques used over the year in the production of solid biopharmaceutical dosage forms. Looking particularly at the use of scCO2 in each of its potential roles-as a solvent, co-solvent, anti-solvent, or co-solute. It ends with a comparison between the compound's stability using supercritical CO2-assisted atomization/spray-drying and conventional drying.


Assuntos
Produtos Biológicos/química , Química Farmacêutica , Sistemas de Liberação de Medicamentos , Dióxido de Carbono/química , Liofilização
5.
Philos Trans A Math Phys Eng Sci ; 373(2057)2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26574528

RESUMO

The integrated use of supercritical carbon dioxide (scCO(2)) and micro- and nanotechnologies has enabled new sustainable strategies for the manufacturing of new medications. 'Green' scCO(2)-based methodologies are well suited to improve either the synthesis or materials processing leading to the assembly of three-dimensional multifunctional constructs. By using scCO(2) either as C1 feedstock or as solvent, simple, economic, efficient and clean routes can be designed to synthesize materials with unique properties such as polyurea dendrimers and oxazoline-based polymers/oligomers. These new biocompatible, biodegradable and water-soluble polymeric materials can be engineered into multifunctional constructs with antimicrobial activity, targeting moieties, labelling units and/or efficiently loaded with therapeutics. This mini-review highlights the particular features exhibited by these materials resulting directly from the followed supercritical routes.

6.
Biofouling ; 29(3): 273-82, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23458129

RESUMO

The production, characterization and anti-biofouling activity of 3D porous scaffolds combining different blends of chitosan and oxazoline-based antimicrobial oligomers is reported. The incorporation of ammonium quaternized oligo(2-oxazoline)s into the composition of the scaffold enhances the stability of the chitosan scaffold under physiological conditions as well as its ability to repel protein adsorption. The blended scaffolds showed mean pore sizes in the range of 18-32 µm, a good pore interconnectivity and high porosity, as well as a large surface area, ultimate key features for anti-biofouling applications. Bovine serum albumin (BSA) adhesion profiles showed that the composition of the scaffolds plays a critical role in the chitosan-oligooxazoline system. Oligobisoxazoline-enriched scaffolds (20% w/w, CB8020) decreased protein adsorption (BSA) by up to 70%. Moreover, 1 mg of CB8020 was able to kill 99.9% of Escherichia coli cells upon contact, demonstrating its potential as promising material for production of tailored non-fouling 3D structures to be used in the construction of novel devices with applications in the biomedical field and water treatment processes.


Assuntos
Antibacterianos/farmacologia , Biofilmes , Incrustação Biológica/prevenção & controle , Quitosana/química , Animais , Antibacterianos/síntese química , Antibacterianos/química , Aderência Bacteriana , Bovinos , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Liofilização , Viabilidade Microbiana , Conformação Molecular , Oxazóis/química , Oxazóis/farmacologia , Porosidade , Soroalbumina Bovina/química , Alicerces Teciduais/química
7.
Angew Chem Int Ed Engl ; 52(49): 13024-7, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24123576

RESUMO

Where is CO2 ? The intermolecular interactions of [C4 mim]BF4 and [C4 mim]PF6 ionic liquids and CO2 have been determined by high-pressure NMR spectroscopy in combination with molecular dynamic simulations. The anion and the cation are both engaged in interactions with CO2 . A detailed picture of CO2 solvation in these ILs is provided. CO2 solubility is essentially determined by the microscopic structure of the IL.

8.
Polymers (Basel) ; 15(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36771867

RESUMO

Surface cleaning of plastic materials of historical value can be challenging due to the high risk of inducing detrimental effects and visual alterations. As a result, recent studies have focused on researching new approaches that might reduce the associated hazards and, at the same time, minimize the environmental impact by employing biodegradable and green materials. In this context, the present work investigates the effects and potential suitability of dense carbon dioxide (CO2) as an alternative and green solvent for cleaning plastic materials of historical value. The results of extensive trials with CO2 in different phases (supercritical, liquid, and vapor) and under various conditions (pressure, temperature, exposure, and depressurization time) are reported for new, transparent, thick poly(methyl methacrylate) (PMMA) samples. The impact of CO2 on the weight, the appearance of the samples (dimensions, color, gloss, and surface texture), and modifications to their physicochemical and mechanical properties were monitored via a multi-analytical approach that included optical microscopy, Raman and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopies, and micro-indentation (Vickers hardness). Results showed that CO2 induced undesirable and irreversible changes in PMMA samples (i.e., formation of fractures and stress-induced cracking, drastic decrease in the surface hardness of the samples), independent of the conditions used (i.e., temperature, pressure, CO2 phase, and exposure time).

9.
ACS Omega ; 8(10): 9179-9186, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36936318

RESUMO

Biopurification is a challenging and growing market. Despite great efforts in the past years, current purification strategies still lack specificity, efficiency, and cost-effectiveness. The development of more sustainable functional materials and processes needs to address pressing environmental goals, efficiency, scale-up, and cost. Herein, l-leucine (LEU)-molecularly imprinted polymers (MIPs), LEU-MIPs, are presented as novel biomolecular fishing polymers for affinity sustainable biopurification. Rational design was performed using quantum mechanics calculations and molecular modeling for selecting the most appropriate monomers. LEU-MIPs were synthesized for the first time by two different green approaches, supercritical carbon dioxide (scCO2) technology and mechanochemistry. A significant imprinting factor of 12 and a binding capacity of 27 mg LEU/g polymer were obtained for the LEU-MIP synthesized in scCO2 using 2-vinylpyridine as a functional monomer, while the LEU-MIP using acrylamide as a functional monomer synthesized by mechanochemistry showed an imprinting factor of 1.4 and a binding capacity of 18 mg LEU/g polymer, both systems operating at a low binding concentration (0.5 mg LEU/mL) under physiological conditions. As expected, at a higher concentration (1.5 mg LEU/mL), the binding capacity was considerably increased. Both green technologies show high potential in obtaining ready-to-use, stable, and low-cost polymers with a molecular recognition ability for target biomolecules, being promising materials for biopurification processes.

10.
Methods Mol Biol ; 2359: 19-42, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34410657

RESUMO

Supercritical fluid technology provides a clean and straightforward way for the preparation of high affinity polymeric materials. Molecularly Imprinted Polymers (MIPs) as dry, free-flowing powders are obtained in a one-step synthetic route yielding molecular recognition materials for several applications. Herein, we describe the experimental procedures involved in the scCO2-assisted MIP development: synthesis, template desorption, impregnation, and membrane preparation. MIP applications are described putting in evidence the advantages of MIP development using supercritical fluid technology.


Assuntos
Impressão Molecular , Polímeros
11.
Int J Pharm ; 591: 119989, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33122113

RESUMO

Small interfering RNA (siRNA) therapy has significant potential for the treatment of myriad diseases, including cancer. While intravenous routes of delivery have been found to be effective for efficient targeting to the liver, achieving high accumulations selectively in other organs, including lung tissues, can be a challenge. We demonstrate the rational design and engineering of a layer-by-layer (LbL) nanoparticle-containing aerosol that is able to achieve efficient, multistage delivery of siRNA in vitro. For the purpose, LbL nanoparticles were, for the first time, encapsulated in composite porous micro scale particles using a supercritical CO2-assisted spray drying (SASD) apparatus using chitosan as an excipient. Such particles exhibited aerodynamic properties highly favorable for pulmonary administration, and effective silencing of mutant KRAS in lung cancer cells derived from tumors of a non-small cell lung cancer (NSCLC) autochthonous model. Furthermore, efficient alveolar accumulation following inhalation in healthy mice was also observed, corroborating in vitro aerodynamic results, and opening new perspectives for further studies of effective lung therapies These results show that multistage aerosols assembled by supercritical CO2-assisted spray drying can enable efficient RNA interference therapy of pulmonary diseases including lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanopartículas , Administração por Inalação , Aerossóis , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Excipientes , Pulmão , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Camundongos , Interferência de RNA , RNA Interferente Pequeno
12.
Carbohydr Polym ; 227: 115287, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31590843

RESUMO

Lopinavir (LPV) is currently used in combination with ritonavir for the clinical management of HIV infections due to its limited oral bioavailability. Herein, we report the application of an in silico method to study cyclodextrin (CyD) host-guest molecular interaction with LPV for the rational selection of the best CyD for developing a CyD based LPV delivery system. The predicted CyD, a (2-hydroxy)propyl-gamma derivative with high degree of substitution (HP17-γ-CyD) was synthesized and comparatively evaluated with γ-CyD and the commercially available HP-γ-CyD. All complexes were prepared by supercritical assisted spray drying (SASD) and co-evaporation (CoEva) at molar ratios (1:1 and 1:2); and afterwards fully characterized. Results indicate a higher LPV amorphization and solubilization ability of HP17-γ-CyD. The SASD processing technology also enhanced LPV solubilization and release from complexes. The application of in silico methodologies is a feasible approach for the rational and/or deductive development of CyD drug delivery systems.


Assuntos
Antirretrovirais/química , Lopinavir/química , gama-Ciclodextrinas/química , Simulação por Computador , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Solubilidade
13.
Polymers (Basel) ; 10(3)2018 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30966341

RESUMO

Molecular imprinting is a powerful technology to create artificial receptors within polymeric matrices. Although it was reported for the first time by Polyakov, eighty-four years ago, it remains, nowadays, a very challenging research area. Molecularly imprinted polymers (MIPs) have been successfully used in several applications where selective binding is a requirement, such as immunoassays, affinity separation, sensors, and catalysis. Conventional methods used on MIP production still use large amounts of organic solvents which, allied with stricter legislation on the use and release of chemicals to the environment and the presence of impurities on final materials, will boost, in our opinion, the use of new cleaner synthetic strategies, in particular, with the application of the principles of green chemistry and engineering. Supercritical carbon dioxide, microwave, ionic liquids, and ultrasound technology are some of the green strategies which have already been applied in MIP production. These strategies can improve MIP properties, such as controlled morphology, homogeneity of the binding sites, and the absence of organic solvents. This review intends to give examples reported in literature on green approaches to MIP development, from nano- to micron-scale applications.

14.
Int J Pharm ; 542(1-2): 125-131, 2018 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-29526621

RESUMO

A novel pH-responsive molecularly imprinted polymer (MIP) based on Itaconic acid:Ethylene glycol dimethacrylate was developed as a potential body-friendly oral drug delivery system for metronidazole (MZ), a pH-independent drug. MIP performance was evaluated in a simulated oral administration situation, at pHs 2.2 and 7.4. Itaconic acid-based copolymers were synthesized using two different molar ratios of template:monomer:crosslinker (T:M:C), 1:5:25 and 1:5:50, in supercritical carbon dioxide (scCO2) in high yields. Further, impregnation of MZ was performed in scCO2 environment. Morphological and chemical properties of the copolymers produced were assessed by SEM, Morphologi G3 and FTIR analyses. Non-molecularly imprinted polymer (NIP) matrices presented swelling over time in opposition to the molecularly imprinted ones. In the scCO2-impregnation process, MIPs showed a significant molecular recognition towards MZ, presenting higher drug uptake ability with MZ loading of 18-61 wt% in MIPs, compared to 7-20 wt% in NIPs. In vitro drug release experiments presented different release profiles at the different pHs, where MZ-MIPs could release higher amounts of MZ at the lowest pH than at pH 7.4.


Assuntos
Anti-Infecciosos/química , Sistemas de Liberação de Medicamentos , Metacrilatos/química , Metronidazol/química , Succinatos/química , Dióxido de Carbono/química , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Impressão Molecular
15.
ChemistryOpen ; 7(10): 772-779, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30338202

RESUMO

POxylated polyurea dendrimer (PUREG4OOx48)-based nanoparticles were loaded with paclitaxel (PTX) and doxorubicin (DOX) and micronized with chitosan (CHT) by using supercritical CO2-assisted spray drying (SASD). Respirable, biocompatible, and biodegradable dry powder formulations (DPFs) were produced to effectively transport and deliver the chemotherapeutics with a controlled rate to the deep lung. In vitro studies performed with the use of the lung adenocarcinoma cell line showed that DOX@PUREG4OOx48 nanoparticles were much more cytotoxic than the free drug. Additionally, the DPFs did not show higher cytotoxicity than the respective nanoparticles, and DOX-DPFs showed a higher chemotherapeutic effect than PTX formulations in adenocarcinoma cells.

16.
J Phys Chem B ; 111(6): 1318-26, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17249720

RESUMO

The carbon and fluorine chemical shifts of mixtures of carbon dioxide and Krytox, a carboxylic acid end-capped perfluorinated polyether used as stabilizer for the dispersion polymerization of methyl methacrylate, have been studied using high-pressure, high-resolution nuclear magnetic resonance. 13C and 19F spectra were measured in the density region between 0.54 and 0.73 g.cm(-3) at 334 K for different solutions of Krytox in scCO2 (0.22, 1.13 and 1.72 w/w %). An in-house developed high-pressure apparatus with the capability to change in situ the sample composition was used for this purpose using a 10 mm polyether ketone NMR tube. The nature of CO2-Krytox interaction was assessed both by comparing the CO2 deltaC variation of neat CO2 with that of mixtures with increasing surfactant composition and by the analysis of Krytox 19F corrected chemical shifts in terms of medium magnetic susceptibility. Ab initio calculations, at the second-order Møller-Plesset level of theory to include the effects of electron correlation, were performed to access and compare the nature of the interactions between CO2 and perfluorinated and nonfluorinated analogue model molecules. Both experimental 13C and 19F HP-NMR results and molecular modeling studies support a F...CO2 site-specific Lewis acid-Lewis base interaction model. A positive entropic variation for the formation of CO2-fluorinated solute complex is advanced as an explanation for the higher solubility of perfluorinated molecules when compared to the nonfluorinated analogues.

17.
Materials (Basel) ; 10(1)2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28772434

RESUMO

Lung cancer is one of the leading causes of death worldwide. Therefore, it is of extreme importance to develop new systems that can deliver anticancer drugs into the site of action when initiating a treatment. Recently, the use of nanotechnology and particle engineering has enabled the development of new drug delivery platforms for pulmonary delivery. In this work, POXylated strawberry-like gold-coated magnetite nanocomposites and ibuprofen (IBP) were encapsulated into a chitosan matrix using Supercritical Assisted Spray Drying (SASD). The dry powder formulations showed adequate morphology and aerodynamic performances (fine particle fraction 48%-55% and aerodynamic diameter of 2.6-2.8 µm) for deep lung deposition through the pulmonary route. Moreover, the release kinetics of IBP was also investigated showing a faster release of the drug at pH 6.8, the pH of lung cancer. POXylated strawberry-like gold-coated magnetite nanocomposites proved to have suitable sizes for cellular internalization and their fluorescent capabilities enable their future use in in vitro cell based assays. As a proof-of-concept, the reported results show that these nano-in-micro formulations could be potential drug vehicles for pulmonary administration.

18.
Int J Pharm ; 519(1-2): 240-249, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28111281

RESUMO

Functionalized gold nanoparticles (AuNPs) have been widely investigated as promising multifunctional nanosystems for the theragnosis of lung cancer, the most common and prominent cause of cancer death worldwide. Nevertheless, nanoparticles are not in appropriate sizes for an accurate deep lung delivery and the lack of locally and effective delivery of therapeutic biomolecules to the deep lungs is, in fact, the major cause of low therapeutic outcome. Herein we incorporate, for the first time, AuNPs into respirable microparticles. AuNPs were functionalized with biocompatible oligo(2-oxazoline)-based optically stable fluorescent coatings, and conjugated with a laminin peptide (YIGSR) for targeted lung cancer delivery. These POxylated AuNPs were then incorporated into a chitosan matrix by a clean process, supercritical CO2-assisted spray drying (SASD), yielding nano-in-micro clean ultrafine dry powder formulations. The engineered formulations present the adequate morphology and flowability to reach the deep lung, with aerodynamic sizes ranging 3.2-3.8µm, and excellent fine particle fraction (FPF) (FPF of 47% for CHT-bearing targeted AuNPs). The optimal biodegradation and release profiles enabled a sustained and controlled release of the embedded nanoparticles, with enhanced cellular uptake, opening new prospects for future lung theragnosis.


Assuntos
Aerossóis/administração & dosagem , Aerossóis/química , Ouro/química , Pulmão/metabolismo , Nanopartículas Metálicas/química , Pós/administração & dosagem , Pós/química , Células A549 , Linhagem Celular Tumoral , Química Farmacêutica/métodos , Quitosana/química , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Inaladores de Pó Seco/métodos , Excipientes/química , Humanos , Nanopartículas Metálicas/administração & dosagem , Tamanho da Partícula
19.
ChemSusChem ; 8(11): 1935-46, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-25916411

RESUMO

Branching at the alkyl side chain of the imidazolium cation in ionic liquids (ILs) was evaluated towards its effect on carbon dioxide (CO2 ) solubilization at 10 and 80 bar (1 bar=1×10(5)  Pa). By combining high-pressure NMR spectroscopy measurements with molecular dynamics simulations, a full description of the molecular interactions that take place in the IL-CO2 mixtures can be obtained. The introduction of a methyl group has a significant effect on CO2 solubility in comparison with linear or fluorinated analogues. The differences in CO2 solubility arise from differences in liquid organization caused by structural changes in the cation. ILs with branched cations have similar short-range cation-anion orientations as those in ILs with linear side chains, but present differences in the long-range order. The introduction of CO2 does not cause perturbations in the former and benefits from the differences in the latter. Branching at the cation results in sponge-like ILs with enhanced capabilities for CO2 capture.


Assuntos
Alcanos/química , Dióxido de Carbono/química , Imidazóis/química , Líquidos Iônicos/química , Dióxido de Carbono/isolamento & purificação , Difusão , Conformação Molecular , Simulação de Dinâmica Molecular , Solubilidade , Solventes/química
20.
Talanta ; 125: 319-21, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24840450

RESUMO

Recovery of fully aggregated water-soluble CdTe quantum dots was achieved by simple treatment with a strong base. A deprotonation-triggered disaggregation is postulated to be the main mechanism involved in the quantum dots "reborn" process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA