Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Semin Immunol ; 66: 101731, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36863140

RESUMO

Allogeneic hematopoietic stem cell transplantation is an effective treatment to cure inborn errors of immunity. Remarkable progress has been achieved thanks to the development and optimization of effective combination of advanced conditioning regimens and use of immunoablative/suppressive agents preventing rejection as well as graft versus host disease. Despite these tremendous advances, autologous hematopoietic stem/progenitor cell therapy based on ex vivo gene addition exploiting integrating γ-retro- or lenti-viral vectors, has demonstrated to be an innovative and safe therapeutic strategy providing proof of correction without the complications of the allogeneic approach. The recent advent of targeted gene editing able to precisely correct genomic variants in an intended locus of the genome, by introducing deletions, insertions, nucleotide substitutions or introducing a corrective cassette, is emerging in the clinical setting, further extending the therapeutic armamentarium and offering a cure to inherited immune defects not approachable by conventional gene addition. In this review, we will analyze the current state-of-the art of conventional gene therapy and innovative protocols of genome editing in various primary immunodeficiencies, describing preclinical models and clinical data obtained from different trials, highlighting potential advantages and limits of gene correction.


Assuntos
Edição de Genes , Transplante de Células-Tronco Hematopoéticas , Humanos , Edição de Genes/métodos , Terapia Genética/métodos , Vetores Genéticos/genética
2.
J Allergy Clin Immunol ; 147(1): 309-320.e6, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32387109

RESUMO

BACKGROUND: Mutations in the recombinase-activating genes cause severe immunodeficiency, with a spectrum of phenotypes ranging from severe combined immunodeficiency to immune dysregulation. Hematopoietic stem cell transplantation is the only curative option, but a high risk of graft failure and poor immune reconstitution have been observed in the absence of myeloablation. OBJECTIVES: Our aim was to improve multilineage engraftment; we tested nongenotoxic conditioning with anti-CD45 mAbs conjugated with saporin CD45 (CD45-SAP). METHODS: Rag1-KO and Rag1-F971L mice, which represent models of severe combined immune deficiency and combined immune deficiency with immune dysregulation, respectively, were conditioned with CD45-SAP, CD45-SAP plus 2 Gy of total body irradiation (TBI), 2 Gy of TBI, 8 Gy of TBI, or no conditioning and treated by using transplantation with lineage-negative bone marrow cells from wild-type mice. Flow cytometry and immunohistochemistry were used to assess engraftment and immune reconstitution. Antibody responses to 2,4,6-trinitrophenyl-conjugated keyhole limpet hemocyanin were measured by ELISA, and presence of autoantibody was detected by microarray. RESULTS: Conditioning with CD45-SAP enabled high levels of multilineage engraftment in both Rag1 mutant models, allowed overcoming of B- and T-cell differentiation blocks and thymic epithelial cell defects, and induced robust cellular and humoral immunity in the periphery. CONCLUSIONS: Conditioning with CD45-SAP allows multilineage engraftment and robust immune reconstitution in mice with either null or hypomorphic Rag mutations while preserving thymic epithelial cell homeostasis.


Assuntos
Anticorpos Monoclonais/farmacologia , Transplante de Medula Óssea , Proteínas de Homeodomínio/genética , Imunoconjugados/farmacologia , Antígenos Comuns de Leucócito/antagonistas & inibidores , Saporinas/farmacologia , Imunodeficiência Combinada Severa/terapia , Condicionamento Pré-Transplante , Aloenxertos , Animais , Anticorpos Monoclonais/efeitos adversos , Proteínas de Homeodomínio/imunologia , Imunoconjugados/efeitos adversos , Antígenos Comuns de Leucócito/genética , Antígenos Comuns de Leucócito/imunologia , Camundongos , Camundongos Knockout , Saporinas/efeitos adversos , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/imunologia
3.
J Allergy Clin Immunol ; 144(3): 825-838, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30926529

RESUMO

BACKGROUND: Thrombocytopenia is a serious issue for all patients with classical Wiskott-Aldrich syndrome (WAS) and X-linked thrombocytopenia (XLT) because it causes severe and life-threatening bleeding. Lentiviral gene therapy (GT) for WAS has shown promising results in terms of immune reconstitution. However, despite the reduced severity and frequency of bleeding events, platelet counts remain low in GT-treated patients. OBJECTIVE: We carefully investigated platelet defects in terms of phenotype and function in untreated patients with WAS and assessed the effect of GT treatment on platelet dysfunction. METHODS: We analyzed a cohort of 20 patients with WAS/XLT, 15 of them receiving GT. Platelet phenotype and function were analyzed by using electron microscopy, flow cytometry, and an aggregation assay. Platelet protein composition was assessed before and after GT by means of proteomic profile analysis. RESULTS: We show that platelets from untreated patients with WAS have reduced size, abnormal ultrastructure, and a hyperactivated phenotype at steady state, whereas activation and aggregation responses to agonists are decreased. GT restores platelet size and function early after treatment and reduces the hyperactivated phenotype proportionally to WAS protein expression and length of follow-up. CONCLUSIONS: Our study highlights the coexistence of morphologic and multiple functional defects in platelets lacking WAS protein and demonstrates that GT normalizes the platelet proteomic profile with consequent restoration of platelet ultrastructure and phenotype, which might explain the observed reduction of bleeding episodes after GT. These results are instrumental also from the perspective of a future clinical trial in patients with XLT only presenting with microthrombocytopenia.


Assuntos
Plaquetas/fisiologia , Terapia Genética , Lentivirus/genética , Síndrome de Wiskott-Aldrich/sangue , Síndrome de Wiskott-Aldrich/terapia , Adolescente , Adulto , Plaquetas/ultraestrutura , Criança , Pré-Escolar , Feminino , Transplante de Células-Tronco Hematopoéticas , Humanos , Lactente , Masculino , Microscopia Eletrônica de Transmissão , Fenótipo , Ativação Plaquetária , Contagem de Plaquetas , Proteína da Síndrome de Wiskott-Aldrich/metabolismo
4.
J Allergy Clin Immunol ; 142(3): 928-941.e8, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29241731

RESUMO

BACKGROUND: Omenn syndrome (OS) is a rare severe combined immunodeficiency associated with autoimmunity and caused by defects in lymphoid-specific V(D)J recombination. Most patients carry hypomorphic mutations in recombination-activating gene (RAG) 1 or 2. Hematopoietic stem cell transplantation is the standard treatment; however, gene therapy (GT) might represent a valid alternative, especially for patients lacking a matched donor. OBJECTIVE: We sought to determine the efficacy of lentiviral vector (LV)-mediated GT in the murine model of OS (Rag2R229Q/R229Q) in correcting immunodeficiency and autoimmunity. METHODS: Lineage-negative cells from mice with OS were transduced with an LV encoding the human RAG2 gene and injected into irradiated recipients with OS. Control mice underwent transplantation with wild-type or OS-untransduced lineage-negative cells. Immunophenotyping, T-dependent and T-independent antigen challenge, immune spectratyping, autoantibody detection, and detailed tissue immunohistochemical analyses were performed. RESULTS: LV-mediated GT allowed immunologic reconstitution, although it was suboptimal compared with that seen in wild-type bone marrow (BM)-transplanted OS mice in peripheral blood and hematopoietic organs, such as the BM, thymus, and spleen. We observed in vivo variability in the efficacy of GT correlating with the levels of transduction achieved. Immunoglobulin levels and T-cell repertoire normalized, and gene-corrected mice responded properly to challenges in vivo. Autoimmune manifestations, such as skin infiltration and autoantibodies, dramatically improved in GT mice with a vector copy number/genome higher than 1 in the BM and 2 in the thymus. CONCLUSIONS: Our data show that LV-mediated GT for patients with OS significantly ameliorates the immunodeficiency, even in an inflammatory environment.


Assuntos
Proteínas de Ligação a DNA/genética , Terapia Genética , Lentivirus/genética , Imunodeficiência Combinada Severa/terapia , Animais , Autoimunidade , Linfócitos B/imunologia , Modelos Animais de Doenças , Feminino , Inflamação/imunologia , Inflamação/terapia , Contagem de Linfócitos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Imunodeficiência Combinada Severa/imunologia , Linfócitos T/imunologia
5.
J Allergy Clin Immunol ; 142(4): 1272-1284, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29421274

RESUMO

BACKGROUND: Wiskott-Aldrich syndrome (WAS) is an X-linked immunodeficiency characterized by eczema, infections, and susceptibility to autoimmunity and malignancies. Thrombocytopenia is a constant finding, but its pathogenesis remains elusive. OBJECTIVE: To dissect the basis of the WAS platelet defect, we used a novel conditional mouse model (CoWas) lacking Wiskott-Aldrich syndrome protein (WASp) only in the megakaryocytic lineage in the presence of a normal immunologic environment, and in parallel we analyzed samples obtained from patients with WAS. METHODS: Phenotypic and functional characterization of megakaryocytes and platelets in mutant CoWas mice and patients with WAS with and without autoantibodies was performed. Platelet antigen expression was examined through a protein expression profile and cluster proteomic interaction network. Platelet immunogenicity was tested by using ELISAs and B-cell and platelet cocultures. RESULTS: CoWas mice showed increased megakaryocyte numbers and normal thrombopoiesis in vitro, but WASp-deficient platelets had short lifespan and high expression of activation markers. Proteomic analysis identified signatures compatible with defects in cytoskeletal reorganization and metabolism yet surprisingly increased antigen-processing capabilities. In addition, WASp-deficient platelets expressed high levels of surface and soluble CD40 ligand and were capable of inducing B-cell activation in vitro. WASp-deficient platelets were highly immunostimulatory in mice and triggered the generation of antibodies specific for WASp-deficient platelets, even in the context of a normal immune system. Patients with WAS also showed platelet hyperactivation and increased plasma soluble CD40 ligand levels correlating with the presence of autoantibodies. CONCLUSION: Overall, these findings suggest that intrinsic defects in WASp-deficient platelets decrease their lifespan and dysregulate immune responses, corroborating the role of platelets as modulators of inflammation and immunity.


Assuntos
Plaquetas/imunologia , Síndrome de Wiskott-Aldrich/imunologia , Adolescente , Adulto , Animais , Autoimunidade , Ligante de CD40/imunologia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Inflamação/sangue , Inflamação/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contagem de Plaquetas , Síndrome de Wiskott-Aldrich/sangue , Proteína da Síndrome de Wiskott-Aldrich/genética , Proteína da Síndrome de Wiskott-Aldrich/imunologia , Adulto Jovem
6.
J Immunol ; 194(9): 4144-53, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25825446

RESUMO

The immune and the skeletal system are tightly interconnected, and B lymphocytes are uniquely endowed with osteo-interactive properties. In this context, receptor activator of NF-κB (RANK) ligand (RANKL) plays a pivotal role in lymphoid tissue formation and bone homeostasis. Although murine models lacking RANK or RANKL show defects in B cell number, the role of the RANKL-RANK axis on B physiology is still a matter of debate. In this study, we have characterized in detail B cell compartment in Rankl(-/-) mice, finding a relative expansion of marginal zone B cells, B1 cells, and plasma cells associated with increased Ig serum levels, spontaneous germinal center formation, and hyperresponse to CD40 triggering. Such abnormalities were associated with an increased frequency of regulatory B cells and augmented B cell-derived IL-10 production. Remarkably, in vivo IL-10-R blockade reduced T cell-triggered plasma cell differentiation and restrained the expansion of regulatory B cells. These data point to a novel role of the RANKL-RANK axis in the regulation of B cell homeostasis and highlight an unexpected link between IL-10 CD40 signaling and the RANKL pathway.


Assuntos
Linfócitos B/imunologia , Interleucina-10/imunologia , Ligante RANK/deficiência , Ligante RANK/imunologia , Animais , Camundongos , Camundongos Knockout
7.
J Allergy Clin Immunol ; 136(3): 692-702.e2, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25792466

RESUMO

BACKGROUND: Wiskott-Aldrich syndrome (WAS) is a severe X-linked immunodeficiency characterized by microthrombocytopenia, eczema, recurrent infections, and susceptibility to autoimmunity and lymphomas. Hematopoietic stem cell transplantation is the treatment of choice; however, administration of WAS gene-corrected autologous hematopoietic stem cells has been demonstrated as a feasible alternative therapeutic approach. OBJECTIVE: Because B-cell homeostasis is perturbed in patients with WAS and restoration of immune competence is one of the main therapeutic goals, we have evaluated reconstitution of the B-cell compartment in 4 patients who received autologous hematopoietic stem cells transduced with lentiviral vector after a reduced-intensity conditioning regimen combined with anti-CD20 administration. METHODS: We evaluated B-cell counts, B-cell subset distribution, B cell-activating factor and immunoglobulin levels, and autoantibody production before and after gene therapy (GT). WAS gene transfer in B cells was assessed by measuring vector copy numbers and expression of Wiskott-Aldrich syndrome protein. RESULTS: After lentiviral vector-mediated GT, the number of transduced B cells progressively increased in the peripheral blood of all patients. Lentiviral vector-transduced progenitor cells were able to repopulate the B-cell compartment with a normal distribution of B-cell subsets both in bone marrow and the periphery, showing a WAS protein expression profile similar to that of healthy donors. In addition, after GT, we observed a normalized frequency of autoimmune-associated CD19(+)CD21(-)CD35(-) and CD21(low) B cells and a reduction in B cell-activating factor levels. Immunoglobulin serum levels and autoantibody production improved in all treated patients. CONCLUSIONS: We provide evidence that lentiviral vector-mediated GT induces transgene expression in the B-cell compartment, resulting in ameliorated B-cell development and functionality and contributing to immunologic improvement in patients with WAS.


Assuntos
Subpopulações de Linfócitos B/metabolismo , Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas , Proteína da Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/terapia , Autoanticorpos/biossíntese , Fator Ativador de Células B/genética , Fator Ativador de Células B/metabolismo , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/patologia , Medula Óssea/imunologia , Medula Óssea/metabolismo , Medula Óssea/patologia , Criança , Pré-Escolar , Expressão Gênica , Perfilação da Expressão Gênica , Vetores Genéticos , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Imunoglobulinas/biossíntese , Imunofenotipagem , Lactente , Lentivirus/genética , Masculino , Proteínas Recombinantes de Fusão/uso terapêutico , Transdução Genética , Condicionamento Pré-Transplante , Transplante Autólogo , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/imunologia , Síndrome de Wiskott-Aldrich/patologia , Proteína da Síndrome de Wiskott-Aldrich/imunologia
8.
J Allergy Clin Immunol ; 133(3): 799-806.e10, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24506932

RESUMO

BACKGROUND: Adenosine deaminase (ADA) deficiency causes severe cellular and humoral immune defects and dysregulation because of metabolic toxicity. Alterations in B-cell development and function have been poorly studied. Enzyme replacement therapy (ERT) and hematopoietic stem cell (HSC) gene therapy (GT) are therapeutic options for patients lacking a suitable bone marrow (BM) transplant donor. OBJECTIVE: We sought to study alterations in B-cell development in ADA-deficient patients and investigate the ability of ERT and HSC-GT to restore normal B-cell differentiation and function. METHODS: Flow cytometry was used to characterize B-cell development in BM and the periphery. The percentage of gene-corrected B cells was measured by using quantitative PCR. B cells were assessed for their capacity to proliferate and release IgM after stimulation. RESULTS: Despite the severe peripheral B-cell lymphopenia, patients with ADA-deficient severe combined immunodeficiency showed a partial block in central BM development. Treatment with ERT or HSC-GT reverted most BM alterations, but ERT led to immature B-cell expansion. In the periphery transitional B cells accumulated under ERT, and the defect in maturation persisted long-term. HSC-GT led to a progressive improvement in B-cell numbers and development, along with increased levels of gene correction. The strongest selective advantage for ADA-transduced cells occurred at the transition from immature to naive cells. B-cell proliferative responses and differentiation to immunoglobulin secreting IgM after B-cell receptor and Toll-like receptor triggering were severely impaired after ERT and improved significantly after HSC-GT. CONCLUSIONS: ADA-deficient patients show specific defects in B-cell development and functions that are differently corrected after ERT and HSC-GT.


Assuntos
Adenosina Desaminase/deficiência , Linfócitos B/fisiologia , Terapia de Reposição de Enzimas , Terapia Genética , Transplante de Células-Tronco Hematopoéticas , Adenosina Desaminase/genética , Adenosina Desaminase/uso terapêutico , Adolescente , Fator Ativador de Células B/fisiologia , Linfócitos B/imunologia , Criança , Pré-Escolar , Humanos , Lactente
9.
J Autoimmun ; 50: 42-50, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24369837

RESUMO

Wiskott-Aldrich Syndrome protein (WASp) regulates the cytoskeleton in hematopoietic cells and mutations in its gene cause the Wiskott-Aldrich Syndrome (WAS), a primary immunodeficiency with microthrombocytopenia, eczema and a higher susceptibility to develop tumors. Autoimmune manifestations, frequently observed in WAS patients, are associated with an increased risk of mortality and still represent an unsolved aspect of the disease. B cells play a crucial role both in immune competence and self-tolerance and defects in their development and function result in immunodeficiency and/or autoimmunity. We performed a phenotypical and molecular analysis of central and peripheral B-cell compartments in WAS pediatric patients. We found a decreased proportion of immature B cells in the bone marrow correlating with an increased presence of transitional B cells in the periphery. These results could be explained by the defective migratory response of WAS B cells to SDF-1α, essential for the retention of immature B cells in the BM. In the periphery, we observed an unusual expansion of CD21(low) B-cell population and increased plasma BAFF levels that may contribute to the high susceptibility to develop autoimmune manifestations in WAS patients. WAS memory B cells were characterized by a reduced in vivo proliferation, decreased somatic hypermutation and preferential usage of IGHV4-34, an immunoglobulin gene commonly found in autoreactive B cells. In conclusion, our findings demonstrate that WASp-deficiency perturbs B-cell homeostasis thus adding a new layer of immune dysregulation concurring to the increased susceptibility to develop autoimmunity in WAS patients.


Assuntos
Autoimunidade , Linfócitos B/imunologia , Suscetibilidade a Doenças/imunologia , Proteína da Síndrome de Wiskott-Aldrich/deficiência , Síndrome de Wiskott-Aldrich/imunologia , Fator Ativador de Células B/sangue , Fator Ativador de Células B/genética , Fator Ativador de Células B/imunologia , Linfócitos B/patologia , Medula Óssea/imunologia , Medula Óssea/patologia , Diferenciação Celular , Movimento Celular , Quimiocina CXCL12/genética , Quimiocina CXCL12/imunologia , Expressão Gênica , Homeostase/imunologia , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Memória Imunológica , Receptores de Complemento 3d/genética , Receptores de Complemento 3d/imunologia , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/patologia , Proteína da Síndrome de Wiskott-Aldrich/genética , Proteína da Síndrome de Wiskott-Aldrich/imunologia
10.
Sci Transl Med ; 16(733): eadh8162, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324638

RESUMO

Recombination activating genes (RAGs) are tightly regulated during lymphoid differentiation, and their mutations cause a spectrum of severe immunological disorders. Hematopoietic stem and progenitor cell (HSPC) transplantation is the treatment of choice but is limited by donor availability and toxicity. To overcome these issues, we developed gene editing strategies targeting a corrective sequence into the human RAG1 gene by homology-directed repair (HDR) and validated them by tailored two-dimensional, three-dimensional, and in vivo xenotransplant platforms to assess rescue of expression and function. Whereas integration into intron 1 of RAG1 achieved suboptimal correction, in-frame insertion into exon 2 drove physiologic human RAG1 expression and activity, allowing disruption of the dominant-negative effects of unrepaired hypomorphic alleles. Enhanced HDR-mediated gene editing enabled the correction of human RAG1 in HSPCs from patients with hypomorphic RAG1 mutations to overcome T and B cell differentiation blocks. Gene correction efficiency exceeded the minimal proportion of functional HSPCs required to rescue immunodeficiency in Rag1-/- mice, supporting the clinical translation of HSPC gene editing for the treatment of RAG1 deficiency.


Assuntos
Edição de Genes , Transplante de Células-Tronco Hematopoéticas , Animais , Humanos , Camundongos , Éxons , Edição de Genes/métodos , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
11.
Curr Opin Immunol ; 80: 102279, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36529093

RESUMO

Increased immunogloblulin-E (IgE) levels associated with eosinophilia represent a common finding observed in Omenn syndrome, a severe immunodeficiency caused by decreased V(D)J recombination, leading to restricted T- and B-cell receptor repertoire. V(D)J recombination is initiated by the lymphoid-restricted recombination-activating gene (RAG) recombinases. The lack of RAG proteins causes a block in lymphocyte differentiation, resulting in T-B- severe combined immunodeficiency. Conversely, hypomorphic mutations allow the generation of few T and B cells, leading to a spectrum of immunological phenotypes, in which immunodeficiency associates to inflammation, immune dysregulation, and autoimmunity. Elevated IgE levels are frequently observed in hypomorphic RAG patients. Here, we describe the role of RAG genes in lymphocyte differentiation and maintenance of immune tolerance.


Assuntos
Síndromes de Imunodeficiência , Imunodeficiência Combinada Severa , Humanos , Proteínas de Ligação a DNA/genética , Imunodeficiência Combinada Severa/genética , Mutação/genética , Imunoglobulina E
12.
Front Immunol ; 14: 1268620, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022635

RESUMO

Introduction: Recombination activating genes (RAG) 1 and 2 defects are the most frequent form of severe combined immunodeficiency (SCID). Patients with residual RAG activity have a spectrum of clinical manifestations ranging from Omenn syndrome to delayed-onset combined immunodeficiency, often associated with granulomas and/or autoimmunity (CID-G/AI). Lentiviral vector (LV) gene therapy (GT) has been proposed as an alternative treatment to the standard hematopoietic stem cell transplant and a clinical trial for RAG1 SCID patients recently started. However, GT in patients with hypomorphic RAG mutations poses additional risks, because of the residual endogenous RAG1 expression and the general state of immune dysregulation and associated inflammation. Methods: In this study, we assessed the efficacy of GT in 2 hypomorphic Rag1 murine models (Rag1F971L/F971L and Rag1R972Q/R972Q), exploiting the same LV used in the clinical trial encoding RAG1 under control of the MND promoter. Results and discussion: Starting 6 weeks after transplant, GT-treated mice showed a decrease in proportion of myeloid cells and a concomitant increase of B, T and total white blood cells. However, counts remained lower than in mice transplanted with WT Lin- cells. At euthanasia, we observed a general redistribution of immune subsets in tissues, with the appearance of mature recirculating B cells in the bone marrow. In the thymus, we demonstrated correction of the block at double negative stage, with a modest improvement in the cortical/medullary ratio. Analysis of antigenspecific IgM and IgG serum levels after in vivo challenge showed an amelioration of antibody responses, suggesting that the partial immune correction could confer a clinical benefit. Notably, no overt signs of autoimmunity were detected, with B-cell activating factor decreasing to normal levels and autoantibodies remaining stable after GT. On the other hand, thymic enlargement was frequently observed, although not due to vector integration and insertional mutagenesis. In conclusion, our work shows that GT could partially alleviate the combined immunodeficiency of hypomorphic RAG1 patients and that extensive efficacy and safety studies with alternative models are required before commencing RAG gene therapy in thesehighly complex patients.


Assuntos
Síndromes de Imunodeficiência , Imunodeficiência Combinada Severa , Humanos , Camundongos , Animais , Proteínas de Homeodomínio/genética , Síndromes de Imunodeficiência/terapia , Linfócitos B , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , Terapia Genética , Imunoproteínas , Mutação
13.
J Allergy Clin Immunol ; 127(6): 1376-84.e5, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21531013

RESUMO

BACKGROUND: Wiskott-Aldrich syndrome (WAS) is an X-linked primary immunodeficiency characterized by thrombocytopenia, eczema, infections, autoimmunity, and lymphomas. Transplantation of hematopoietic stem cells from HLA-identical donors is curative, but it is not available to all patients. We have developed a gene therapy (GT) approach for WAS by using a lentiviral vector encoding for human WAS promoter/cDNA (w1.6W) and demonstrated its preclinical efficacy and safety. OBJECTIVE: To evaluate B-cell reconstitution and correction of B-cell phenotype in GT-treated mice. METHODS: We transplanted Was(-/-) mice sublethally irradiated (700 rads) with lineage marker-depleted bone marrow wild-type cells, Was(-/-) cells untransduced or transduced with the w1.6W lentiviral vector and analyzed B-cell reconstitution in bone marrow, spleen, and peritoneum. RESULTS: Here we show that WAS protein(+) B cells were present in central and peripheral B-cell compartments from GT-treated mice and displayed the strongest selective advantage in the splenic marginal zone and peritoneal B1 cell subsets. After GT, splenic architecture was improved and B-cell functions were restored, as demonstrated by the improved antibody response to pneumococcal antigens and the reduction of serum IgG autoantibodies. CONCLUSION: WAS GT leads to improvement of B-cell functions, even in the presence of a mixed chimerism, further validating the clinical application of the w1.6W lentiviral vector.


Assuntos
Linfócitos B/imunologia , Terapia Genética/métodos , Síndrome de Wiskott-Aldrich/imunologia , Síndrome de Wiskott-Aldrich/terapia , Animais , Antígenos T-Independentes/administração & dosagem , Autoanticorpos/sangue , Linfócitos B/metabolismo , Transplante de Medula Óssea , Modelos Animais de Doenças , Expressão Gênica , Vetores Genéticos , Humanos , Lentivirus/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Síndrome de Wiskott-Aldrich/genética , Proteína da Síndrome de Wiskott-Aldrich/deficiência , Proteína da Síndrome de Wiskott-Aldrich/genética , Proteína da Síndrome de Wiskott-Aldrich/metabolismo
14.
Cell Stem Cell ; 29(10): 1428-1444.e9, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36206730

RESUMO

Long-range gene editing by homology-directed repair (HDR) in hematopoietic stem/progenitor cells (HSPCs) often relies on viral transduction with recombinant adeno-associated viral vector (AAV) for template delivery. Here, we uncover unexpected load and prolonged persistence of AAV genomes and their fragments, which trigger sustained p53-mediated DNA damage response (DDR) upon recruiting the MRE11-RAD50-NBS1 (MRN) complex on the AAV inverted terminal repeats (ITRs). Accrual of viral DNA in cell-cycle-arrested HSPCs led to its frequent integration, predominantly in the form of transcriptionally competent ITRs, at nuclease on- and off-target sites. Optimized delivery of integrase-defective lentiviral vector (IDLV) induced lower DNA load and less persistent DDR, improving clonogenic capacity and editing efficiency in long-term repopulating HSPCs. Because insertions of viral DNA fragments are less frequent with IDLV, its choice for template delivery mitigates the adverse impact and genotoxic burden of HDR editing and should facilitate its clinical translation in HSPC gene therapy.


Assuntos
DNA Viral , Proteína Supressora de Tumor p53 , Sistemas CRISPR-Cas , Dano ao DNA , Edição de Genes , Células-Tronco Hematopoéticas , Humanos , Integrases , Proteína Supressora de Tumor p53/genética
15.
J Allergy Clin Immunol ; 125(2): 439-448.e8, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20159256

RESUMO

BACKGROUND: The Wiskott-Aldrich syndrome (WAS) is a rare genetic disease characterized by thrombocytopenia, immunodeficiency, autoimmunity, and hematologic malignancies. Secondary mutations leading to re-expression of WAS protein (WASP) are relatively frequent in patients with WAS. OBJECTIVE: The tissue distribution and function of revertant cells were investigated in a novel case of WAS gene secondary mutation. METHODS: A vast combination of approaches was used to characterize the second-site mutation, to investigate revertant cell function, and to track their distribution over a 18-year clinical follow-up. RESULTS: The WAS gene secondary mutation was a 4-nucleotide insertion, 4 nucleotides downstream of the original deletion. This somatic mutation allowed the T-cell-restricted expression of a stable, full-length WASP with a 3-amino acid change compared with the wild-type protein. WASP(+) T cells appeared early in the spleen (age 10 years) and were highly enriched in a mesenteric lymph node at a later time (age 23 years). Revertant T cells had a diversified T-cell-receptor repertoire and displayed in vitro and in vivo selective advantage. They proliferated and produced cytokines normally on T-cell-receptor stimulation. Consistently, the revertant WASP correctly localized to the immunologic synapse and to the leading edge of migrating T cells. CONCLUSION: Despite the high proportion of functional revertant T cells, the patient still has severe infections and autoimmune disorders, suggesting that re-expression of WASP in T cells is not sufficient to normalize immune functions fully in patients with WAS.


Assuntos
Tecido Linfoide/imunologia , Linfócitos T/imunologia , Proteína da Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/imunologia , Adulto , Sequência de Aminoácidos , Sequência de Bases , Western Blotting , Separação Celular , Análise Mutacional de DNA , Citometria de Fluxo , Humanos , Tecido Linfoide/citologia , Masculino , Microscopia Confocal , Dados de Sequência Molecular , Mosaicismo , Mutação , Reação em Cadeia da Polimerase
16.
Front Genome Ed ; 3: 618378, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34713250

RESUMO

In the field of hematology, gene therapies based on integrating vectors have reached outstanding results for a number of human diseases. With the advent of novel programmable nucleases, such as CRISPR/Cas9, it has been possible to expand the applications of gene therapy beyond semi-random gene addition to site-specific modification of the genome, holding the promise for safer genetic manipulation. Here we review the state of the art of ex vivo gene editing with programmable nucleases in human hematopoietic stem and progenitor cells (HSPCs). We highlight the potential advantages and the current challenges toward safe and effective clinical translation of gene editing for the treatment of hematological diseases.

17.
Front Immunol ; 12: 669943, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211466

RESUMO

Major Histocompatibility Complex (MHC) class II (MHCII) deficiency (MHCII-D), also known as Bare Lymphocyte Syndrome (BLS), is a rare combined immunodeficiency due to mutations in genes regulating expression of MHCII molecules. MHCII deficiency results in impaired cellular and humoral immune responses, leading to severe infections and autoimmunity. Abnormal cross-talk with developing T cells due to the absence of MHCII expression likely leads to defects in thymic epithelial cells (TEC). However, the contribution of TEC alterations to the pathogenesis of this primary immunodeficiency has not been well characterized to date, in particular in regard to immune dysregulation. To this aim, we have performed an in-depth cellular and molecular characterization of TEC in this disease. We observed an overall perturbation of thymic structure and function in both MHCII-/- mice and patients. Transcriptomic and proteomic profiling of murine TEC revealed several alterations. In particular, we demonstrated that impairment of lymphostromal cross-talk in the thymus of MHCII-/- mice affects mTEC maturation and promiscuous gene expression and causes defects of central tolerance. Furthermore, we observed peripheral tolerance impairment, likely due to defective Treg cell generation and/or function and B cell tolerance breakdown. Overall, our findings reveal disease-specific TEC defects resulting in perturbation of central tolerance and limiting the potential benefits of hematopoietic stem cell transplantation in MHCII deficiency.


Assuntos
Células Epiteliais/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Tolerância Imunológica , Imunodeficiência Combinada Severa/imunologia , Timo/imunologia , Adolescente , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Estudos de Casos e Controles , Criança , Pré-Escolar , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Europa (Continente) , Feminino , Transplante de Células-Tronco Hematopoéticas , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Lactente , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , América do Norte , Proteoma , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/metabolismo , Imunodeficiência Combinada Severa/cirurgia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Timócitos , Timo/metabolismo , Transcriptoma , Adulto Jovem
18.
Front Immunol ; 11: 607926, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329604

RESUMO

Genetic defects in recombination activating genes (RAG) 1 and 2 cause a broad spectrum of severe immune defects ranging from early severe and repeated infections to inflammation and autoimmune manifestations. A correlation between in vitro recombination activity and immune phenotype has been described. Hematopoietic cell transplantation is the treatment of care; however, the availability of next generation sequencing and whole genome sequencing has allowed the identification of novel genetic RAG variants in immunodeficient patients at various ages, raising therapeutic questions. This review addresses the recent advances of novel therapeutic approaches for RAG deficiency. As conventional myeloablative conditioning regimens are associated with acute toxicities and transplanted-related mortality, innovative minimal conditioning regimens based on the use of monoclonal antibodies are now emerging and show promising results. To overcome shortage of compatible donors, gene therapy has been developed in various RAG preclinical models. Overall, the transplantation of autologous gene corrected hematopoietic precursors and the use of non-genotoxic conditioning will open a new era, offering a cure to an increasing number of RAG patients regardless of donor availability and severity of clinical conditions.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Terapia Genética , Transplante de Células-Tronco Hematopoéticas , Imunodeficiência Combinada Severa/cirurgia , Condicionamento Pré-Transplante , Animais , Anticorpos Monoclonais/efeitos adversos , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Difusão de Inovações , Predisposição Genética para Doença , Terapia Genética/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Proteínas de Homeodomínio/genética , Humanos , Hospedeiro Imunocomprometido , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Fenótipo , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/imunologia , Imunodeficiência Combinada Severa/metabolismo , Condicionamento Pré-Transplante/efeitos adversos
19.
J Leukoc Biol ; 103(3): 577-590, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28851742

RESUMO

Microthrombocytopenia is the clinical hallmark of WAS, a rare X-linked immunodeficiency that is characterized by eczema, autoimmunity, and cancer susceptibility. This disease is caused by mutations in the WAS gene, which is expressed in hematopoietic cells and regulates actin cytoskeleton remodeling thereby modulating various cellular functions, including motility, immunologic synapse assembly, and signaling. Despite extensive studies that have provided great insight into the relevance of this molecule to innate and cellular immunity, the exact mechanisms of microthrombocytopenia in WAS are still unknown. This review focuses on the recent progress made in dissecting the pathogenesis of platelet defects in patients with WAS and their murine counterparts. In parallel, we will provide an overview of the state-of-the art platelets as immune modulators at the interface between hemostasis and the immune system, which suggests that these cells may have a direct role in the pathogenesis of immune dysregulation in WAS.


Assuntos
Autoimunidade , Plaquetas/imunologia , Síndrome de Wiskott-Aldrich/imunologia , Animais , Plaquetas/patologia , Humanos , Transdução de Sinais , Síndrome de Wiskott-Aldrich/patologia
20.
Front Immunol ; 8: 490, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28512459

RESUMO

Wiskott-Aldrich syndrome (WAS) is a primary immunodeficiency caused by mutations in the gene encoding the hematopoietic-specific WAS protein (WASp). WAS is frequently associated with autoimmunity, indicating a critical role of WASp in maintenance of tolerance. The role of B cells in the induction of autoreactive immune responses in WAS has been investigated in several settings, but the mechanisms leading to the development of autoimmune manifestations have been difficult to evaluate in the mouse models of the disease that do not spontaneously develop autoimmunity. We performed an extensive characterization of Was-/- mice that provided evidence of the potential alteration in B cell selection, because of the presence of autoantibodies against double-stranded DNA, platelets, and tissue antigens. To uncover the mechanisms leading to the activation of the potentially autoreactive B cells in Was-/- mice, we performed in vivo chronic stimulations with toll-like receptors agonists (LPS and CpG) and apoptotic cells or infection with lymphocytic choriomeningitis virus. All treatments led to increased production of autoantibodies, increased proteinuria, and kidney tissue damage in Was-/- mice. These findings demonstrate that a lower clearance of pathogens and/or self-antigens and the resulting chronic inflammatory state could cause B cell tolerance breakdown leading to autoimmunity in WAS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA