Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Differentiation ; 138: 100790, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38908344

RESUMO

Mutation of the GABRA1 gene is associated with neurodevelopmental defects and epilepsy. GABRA1 encodes for the α1 subunit of the γ-aminobutyric acid type A receptor (GABAAR), which regulates the fast inhibitory impulses of the nervous system. Multiple model systems have been developed to understand the function of GABRA1, but these models have produced complex and, at times, incongruent data. Thus, additional model systems are required to validate and substantiate previous results. We sought to provide initial phenotypic analysis of a novel germline mutant allele. Our analysis provides a solid foundation for the future use of this allele to characterize gabra1 functionally and pharmacologically using zebrafish. We investigated the behavioral swim patterns associated with a nonsense mutation of the zebrafish gabra1 (sa43718 allele) gene. The sa43718 allele causes a decrease in gabra1 mRNA expression, which is associated with light induced hypermotility, one phenotype previously associated with seizure like behavior in zebrafish. Mutation of gabra1 was accompanied by decreased mRNA expression of gabra2, gabra3, and gabra5, indicating a reduction in the expression of additional α sub-units of the GABAAR. Although multiple sub-units were decreased, larvae continued to respond to pentylenetetrazole (PTZ), indicating that a residual GABAAR exists in the sa43718 allele. Proteomics analysis demonstrated that mutation of gabra1 is associated with abnormal expression of proteins that regulate synaptic vesicle fusion, vesicle transport, synapse development, and mitochondrial protein complexes. These data support previous studies performed in a zebrafish nonsense allele created by CRISPR/Cas9 and validate that loss of function mutations in the gabra1 gene result in seizure-like phenotypes with abnormal development of the GABA synapse. Our results add to the existing body of knowledge as to the function of GABRA1 during development and validate that zebrafish can be used to provide complete functional characterization of the gene.


Assuntos
Alelos , Receptores de GABA-A , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Mutação com Perda de Função , Códon sem Sentido/genética , Mutação em Linhagem Germinativa , Fenótipo , Convulsões/genética , Convulsões/patologia
2.
Differentiation ; 131: 74-81, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37167860

RESUMO

Variants in the MMACHC gene cause combined methylmalonic acidemia and homocystinuria cblC type, the most common inborn error of intracellular cobalamin (vitamin B12) metabolism. cblC is associated with neurodevelopmental, hematological, ocular, and biochemical abnormalities. In a subset of patients, mild craniofacial dysmorphia has also been described. Mouse models of Mmachc deletion are embryonic lethal but cause severe craniofacial phenotypes such as facial clefts. MMACHC encodes an enzyme required for cobalamin processing and variants in this gene result in the accumulation of two metabolites: methylmalonic acid (MMA) and homocysteine (HC). Interestingly, other inborn errors of cobalamin metabolism, such as cblX syndrome, are associated with mild facial phenotypes. However, the presence and severity of MMA and HC accumulation in cblX syndrome is not consistent with the presence or absence of facial phenotypes. Thus, the mechanisms by which mutations in MMACHC cause craniofacial defects are yet to be completely elucidated. Here we have characterized the craniofacial phenotypes in a zebrafish model of cblC (hg13) and performed restoration experiments with either a wildtype or a cobalamin binding deficient MMACHC protein. Homozygous mutants did not display gross morphological defects in facial development but did have abnormal chondrocyte nuclear organization and an increase in the average number of neighboring cell contacts, both phenotypes were fully penetrant. Abnormal chondrocyte nuclear organization was not associated with defects in the localization of neural crest specific markers, sox10 (RFP transgene) or barx1. Both nuclear angles and the number of neighboring cell contacts were fully restored by wildtype MMACHC and a cobalamin binding deficient variant of the MMACHC protein. Collectively, these data suggest that mutation of MMACHC causes mild to moderate craniofacial phenotypes that are independent of cobalamin binding.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Peixe-Zebra , Animais , Camundongos , Peixe-Zebra/genética , Condrócitos/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/genética , Vitamina B 12/genética , Vitamina B 12/metabolismo , Mutação , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
3.
Genesis ; 58(12): e23397, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33197123

RESUMO

Inborn errors of cholesterol metabolism occur as a result of mutations in the cholesterol synthesis pathway (CSP). Although mutations in the CSP cause a multiple congenital anomaly syndrome, craniofacial abnormalities are a hallmark phenotype associated with these disorders. Previous studies have established that mutation of the zebrafish hmgcs1 gene (Vu57 allele), which encodes the first enzyme in the CSP, causes defects in craniofacial development and abnormal neural crest cell (NCC) differentiation. However, the molecular mechanisms by which the products of the CSP disrupt NCC differentiation are not completely known. Cholesterol is known to regulate the activity of WNT signaling, an established regulator of NCC differentiation. We hypothesized that defects in cholesterol synthesis are associated with reduced WNT signaling, consequently resulting in abnormal craniofacial development. To test our hypothesis we performed a combination of pharmaceutical inhibition, gene expression assays, and targeted rescue experiments to understand the function of the CSP and WNT signaling during craniofacial development. We demonstrate reduced expression of four canonical WNT downstream target genes in homozygous carriers of the Vu57 allele and reduced axin2 expression, a known WNT target gene, in larvae treated with Ro-48-8071, an inhibitor of cholesterol synthesis. Moreover, activation of WNT signaling via treatment with WNT agonist I completely restored the craniofacial defects present in a subset of animals carrying the Vu57 allele. Collectively, these data suggest interplay between the CSP and WNT signaling during craniofacial development.


Assuntos
Proteína Axina , Colesterol/metabolismo , Anormalidades Craniofaciais/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Crista Neural/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Peixe-Zebra/genética , Alelos , Animais , Proteína Axina/genética , Proteína Axina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Ciclina D1/genética , Ciclina D1/metabolismo , Regulação para Baixo , Embrião não Mamífero/metabolismo , Endotelina-1/genética , Endotelina-1/metabolismo , Face/embriologia , Feminino , Genótipo , Masculino , Mutação , Crista Neural/embriologia , Fenótipo , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
BMC Neurosci ; 21(1): 27, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32522152

RESUMO

BACKGROUND: Precise regulation of neural precursor cell (NPC) proliferation and differentiation is essential to ensure proper brain development and function. The HCFC1 gene encodes a transcriptional co-factor that regulates cell proliferation, and previous studies suggest that HCFC1 regulates NPC number and differentiation. However, the molecular mechanism underlying these cellular deficits has not been completely characterized. METHODS: Here we created a zebrafish harboring mutations in the hcfc1a gene (the hcfc1aco60/+ allele), one ortholog of HCFC1, and utilized immunohistochemistry and RNA-sequencing technology to understand the function of hcfc1a during neural development. RESULTS: The hcfc1aco60/+ allele results in an increased number of NPCs and increased expression of neuronal and glial markers. These neural developmental deficits are associated with larval hypomotility and the abnormal expression of asxl1, a polycomb transcription factor, which we identified as a downstream effector of hcfc1a. Inhibition of asxl1 activity and/or expression in larvae harboring the hcfc1aco60/+ allele completely restored the number of NPCs to normal levels. CONCLUSION: Collectively, our data demonstrate that hcfc1a regulates NPC number, NPC proliferation, motor behavior, and brain development.


Assuntos
Encéfalo/crescimento & desenvolvimento , Diferenciação Celular/genética , Proliferação de Células/genética , Regulação da Expressão Gênica/genética , Fator C1 de Célula Hospedeira/genética , Proteínas de Peixe-Zebra/genética , Animais , Encéfalo/metabolismo , Células Cultivadas , Células-Tronco Neurais/fisiologia , Neurogênese , Neurônios/metabolismo , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética
5.
Hum Mol Genet ; 26(15): 2838-2849, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28449119

RESUMO

CblX (MIM309541) is an X-linked recessive disorder characterized by defects in cobalamin (vitamin B12) metabolism and other developmental defects. Mutations in HCFC1, a transcriptional co-regulator which interacts with multiple transcription factors, have been associated with cblX. HCFC1 regulates cobalamin metabolism via the regulation of MMACHC expression through its interaction with THAP11, a THAP domain-containing transcription factor. The HCFC1/THAP11 complex potentially regulates genes involved in diverse cellular functions including cell cycle, proliferation, and transcription. Thus, it is likely that mutation of THAP11 also results in biochemical and other phenotypes similar to those observed in patients with cblX. We report a patient who presented with clinical and biochemical phenotypic features that overlap cblX, but who does not have any mutations in either MMACHC or HCFC1. We sequenced THAP11 by Sanger sequencing and discovered a potentially pathogenic, homozygous variant, c.240C > G (p.Phe80Leu). Functional analysis in the developing zebrafish embryo demonstrated that both THAP11 and HCFC1 regulate the proliferation and differentiation of neural precursors, suggesting important roles in normal brain development. The loss of THAP11 in zebrafish embryos results in craniofacial abnormalities including the complete loss of Meckel's cartilage, the ceratohyal, and all of the ceratobranchial cartilages. These data are consistent with our previous work that demonstrated a role for HCFC1 in vertebrate craniofacial development. High throughput RNA-sequencing analysis reveals several overlapping gene targets of HCFC1 and THAP11. Thus, both HCFC1 and THAP11 play important roles in the regulation of cobalamin metabolism as well as other pathways involved in early vertebrate development.


Assuntos
Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Vitamina B 12/metabolismo , Animais , Sequência de Bases , Região Branquial/metabolismo , Diferenciação Celular , Criança , Anormalidades Craniofaciais/genética , Fibroblastos , Regulação da Expressão Gênica/genética , Fator C1 de Célula Hospedeira/química , Fator C1 de Célula Hospedeira/genética , Fator C1 de Célula Hospedeira/metabolismo , Humanos , Mutação , Cultura Primária de Células , Transcrição Gênica , Vitamina B 12/genética , Peixe-Zebra/genética
6.
Gene ; 864: 147290, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36804358

RESUMO

Mutations in the HCFC1 transcriptional co-factor protein are the cause of cblX syndrome and X-linked intellectual disability (XLID). cblX is the more severe disorder associated with intractable epilepsy, abnormal cobalamin metabolism, facial dysmorphia, cortical gyral malformations, and intellectual disability. In vitro, murine Hcfc1 regulates neural precursor (NPCs) proliferation and number, which has been validated in zebrafish. However, conditional deletion of mouse Hcfc1 in Nkx2.1 + cells increased cell death, reduced Gfap expression, and reduced numbers of GABAergic neurons. Thus, the role of this gene in brain development is not completely understood. Recently, knock-in of both a cblX (HCFC1) and cblX-like (THAP11) allele were created in mice. Knock-in of the cblX-like allele was associated with increased expression of proteins required for ribosome biogenesis. However, the brain phenotypes were not comprehensively studied due to sub-viability. Therefore, a mechanism underlying increased ribosome biogenesis was not described. We used a missense, a nonsense, and two conditional zebrafish alleles to further elucidate this mechanism during brain development. We observed contrasting phenotypes at the level of Akt/mTor activation, the number of radial glial cells, and the expression of two downstream target genes of HCFC1, asxl1 and ywhab. Despite these divergent phenotypes, each allele studied demonstrates with a high degree of face validity when compared to the phenotypes reported in the literature. Collectively, these data suggest that individual mutations in the HCFC1 protein result in differential mTOR activity which may be associated with contrasting cellular phenotypes.


Assuntos
Deficiência Intelectual , Peixe-Zebra , Animais , Camundongos , Códon sem Sentido , Células Ependimogliais/metabolismo , Fenótipo , Proteínas Repressoras/genética , Serina-Treonina Quinases TOR/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
7.
bioRxiv ; 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36747751

RESUMO

Mutation of the GABRA1 gene is associated with neurodevelopmental defects and epilepsy. GABRA1 encodes for the α1 subunit of the gamma-aminobutyric acid type A receptor (GABAAR), which regulates the fast inhibitory impulses of the nervous system. Multiple model systems have previously been developed to understand the function of GABRA1 during development, but these models have produced complex and at times incongruent data. Thus, additional model systems are required to validate and substantiate previously published results. We investigated the behavioral swim patterns associated with a nonsense mutation of the zebrafish gabra1 (sa43718 allele) gene. The sa43718 allele causes a decrease in gabra1 mRNA expression, which is associated with light induced hypermotility, one phenotype associated with seizure like behavior in zebrafish. Mutation of gabra1 was accompanied by decreased mRNA expression of gabra2, gabra3, and gabra5, indicating a reduction in the expression of additional alpha sub-units of the GABAAR. Although multiple sub-units were decreased in total expression, larvae continued to respond to pentylenetetrazole (PTZ) indicating that a residual GABAAR exists in the sa43718 allele. Proteomics analysis demonstrated that nonsense mutation of gabra1 is associated with abnormal expression of proteins that regulate proton transport, ion homeostasis, vesicle transport, and mitochondrial protein complexes. These data support previous studies performed in a zebrafish nonsense allele created by CRISPR/Cas9 and validate that loss of function mutations in the gabra1 gene result in seizure like phenotypes with abnormal function of inhibitory synapses.

8.
bioRxiv ; 2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36711998

RESUMO

Variants in the MMACHC gene cause combined methylmalonic acidemia and homocystinuria cblC type, the most common inborn error of intracellular cobalamin (vitamin B12) metabolism. cblC is associated with neurodevelopmental, hematological, ocular, and biochemical abnormalities. In a subset of patients, mild craniofacial dysmorphia has also been described. Mouse models of Mmachc deletion are embryonic lethal but cause severe craniofacial phenotypes such as facial clefts. MMACHC encodes an enzyme required for cobalamin processing and variants in this gene result in the accumulation of two metabolites: methylmalonic acid (MMA) and homocysteine (HC). Interestingly, other inborn errors of cobalamin metabolism, such as cblX syndrome, are associated with mild facial phenotypes. However, the presence and severity of MMA and HC accumulation in cblX syndrome is not consistent with the presence or absence of facial phenotypes. Thus, the mechanisms by which mutation of MMACHC cause craniofacial defects have not been completely elucidated. Here we have characterized the craniofacial phenotypes in a zebrafish model of cblC ( hg13 ) and performed restoration experiments with either wildtype or a cobalamin binding deficient MMACHC protein. Homozygous mutants did not display gross morphological defects in facial development, but did have abnormal chondrocyte intercalation, which was fully penetrant. Abnormal chondrocyte intercalation was not associated with defects in the expression/localization of neural crest specific markers, sox10 or barx1 . Most importantly, chondrocyte organization was fully restored by wildtype MMACHC and a cobalamin binding deficient variant of MMACHC protein. Collectively, these data suggest that mutation of MMACHC causes mild to moderate craniofacial phenotypes that are independent of cobalamin binding.

9.
Med Res Arch ; 8(6)2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34164576

RESUMO

Mutations in the HCFC1 gene are associated with cases of syndromic (cblX) and non-syndromic intellectual disability. Syndromic individuals present with severe neurological defects including intractable epilepsy, facial dysmorphia, and intellectual disability. Non-syndromic individuals have also been described and implicate a role for HCFC1 during brain development. The penetrance of phenotypes and the presence of an overall syndrome is associated with the location of the mutation within the HCFC1 protein. Thus, one could hypothesize that the positioning of HCFC1 mutations lead to different neurological phenotypes that include but are not restricted to intellectual disability. The HCFC1 protein is comprised of multiple domains that function in cellular proliferation/metabolism. Several reports of HCFC1 disease variants have been identified, but a comprehensive review of each variant and its associated phenotypes has not yet been compiled. Here we perform a detailed review of HCFC1 function, model systems, variant location, and accompanying phenotypes to highlight current knowledge and the future status of the field.

10.
Blood Adv ; 3(8): 1244-1254, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30987969

RESUMO

Erythropoiesis is the process by which new red blood cells (RBCs) are formed and defects in this process can lead to anemia or thalassemia. The GATA1 transcription factor is an established mediator of RBC development. However, the upstream mechanisms that regulate the expression of GATA1 are not completely characterized. Cholesterol is 1 potential upstream mediator of GATA1 expression because previously published studies suggest that defects in cholesterol synthesis disrupt RBC differentiation. Here we characterize RBC development in a zebrafish harboring a single missense mutation in the hmgcs1 gene (Vu57 allele). hmgcs1 encodes the first enzyme in the cholesterol synthesis pathway and mutation of hmgcs1 inhibits cholesterol synthesis. We analyzed the number of RBCs in hmgcs1 mutants and their wild-type siblings. Mutation of hmgcs1 resulted in a decrease in the number of mature RBCs, which coincides with reduced gata1a expression. We combined these experiments with pharmacological inhibition and confirmed that cholesterol and isoprenoid synthesis are essential for RBC differentiation, but that gata1a expression is isoprenoid dependent. Collectively, our results reveal 2 novel upstream regulators of RBC development and suggest that appropriate cholesterol homeostasis is critical for primitive erythropoiesis.


Assuntos
Diferenciação Celular/genética , Eritrócitos/enzimologia , Eritropoese/genética , Hidroximetilglutaril-CoA Sintase , Mutação de Sentido Incorreto , Terpenos/metabolismo , Peixe-Zebra , Substituição de Aminoácidos , Animais , Colesterol/biossíntese , Colesterol/genética , Fator de Transcrição GATA1/biossíntese , Fator de Transcrição GATA1/genética , Regulação da Expressão Gênica , Hidroximetilglutaril-CoA Sintase/genética , Hidroximetilglutaril-CoA Sintase/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/biossíntese , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA