RESUMO
Polycystic ovarian syndrome (PCOS) is the most common endocrinological disorder in women, in which, besides chronic anovulation/oligomenorrhea and ovarian cysts, hyperandrogenism plays a critical role in a large fraction of subjects. Inositol isomers-myo-Inositol and D-Chiro-Inositol-have recently been pharmacologically effective in managing many PCOS symptoms while rescuing ovarian fertility. However, some disappointing clinical results prompted the reconsideration of their specific biological functions. Surprisingly, D-Chiro-Ins stimulates androgen synthesis and decreases the ovarian estrogen pathway; on the contrary, myo-Ins activates FSH response and aromatase activity, finally mitigating ovarian hyperandrogenism. However, when the two isomers are given in association-according to the physiological ratio of 40:1-patients could benefit from myo-Ins enhanced FSH and estrogen responsiveness, while taking advantage of the insulin-sensitizing effects displayed mostly by D-Chiro-Ins. We need not postulate insulin resistance to explain PCOS pathogenesis, given that insulin hypersensitivity is likely a shared feature of PCOS ovaries. Indeed, even in the presence of physiological insulin stimulation, the PCOS ovary synthesizes D-Chiro-Ins four times more than that measured in control theca cells. The increased D-Chiro-Ins within the ovary is detrimental in preserving steroidogenic control, and this failure can easily explain why treatment strategies based upon high D-Chiro-Ins have been recognized as poorly effective. Within this perspective, two factors emerge as major determinants in PCOS: hyperandrogenism and reduced aromatase expression. Therefore, PCOS could no longer be considered a disease only due to increased androgen synthesis without considering the contemporary downregulation of aromatase and FSH receptors. Furthermore, these findings suggest that inositols can be specifically effective only for those PCOS phenotypes featured by hyperandrogenism.
Assuntos
Hiperandrogenismo , Resistência à Insulina , Síndrome do Ovário Policístico , Humanos , Feminino , Síndrome do Ovário Policístico/metabolismo , Inositol/metabolismo , Hiperandrogenismo/tratamento farmacológico , Aromatase/genética , Androgênios/uso terapêutico , Resistência à Insulina/fisiologia , Insulina/uso terapêutico , Hormônio Foliculoestimulante/uso terapêutico , Estrogênios/uso terapêuticoRESUMO
Microgravity impairs tissue organization and critical pathways involved in the cell-microenvironment interplay, where fibroblasts have a critical role. We exposed dermal fibroblasts to simulated microgravity by means of a Random Positioning Machine (RPM), a device that reproduces conditions of weightlessness. Molecular and structural changes were analyzed and compared to control samples growing in a normal gravity field. Simulated microgravity impairs fibroblast conversion into myofibroblast and inhibits their migratory properties. Consequently, the normal interplay between fibroblasts and keratinocytes were remarkably altered in 3D co-culture experiments, giving rise to several ultra-structural abnormalities. Such phenotypic changes are associated with down-regulation of α-SMA that translocate in the nucleoplasm, altogether with the concomitant modification of the actin-vinculin apparatus. Noticeably, the stress associated with weightlessness induced oxidative damage, which seemed to concur with such modifications. These findings disclose new opportunities to establish antioxidant strategies that counteract the microgravity-induced disruptive effects on fibroblasts and tissue organization.
Assuntos
Ausência de Peso , Técnicas de Cocultura , Fibroblastos/metabolismo , Queratinócitos , Fenótipo , Simulação de Ausência de PesoRESUMO
Idiopathic pulmonary fibrosis (IPF) is a disease characterized by progressive scarring of the lung that involves the pulmonary interstitium. The disease may rapidly progress, leading to respiratory failure, and the long-term survival is poor. There are no accurate biomarkers available so far. Our aim was to evaluate the expression of the B4GALT1 in patients with IPF. Analysis of B4GALT1 gene expression was performed in silico on two gene sets, retrieved from the Gene Expression Omnibus database. Expression of B4GALT1 was then evaluated, both at the mRNA and protein levels, on lung specimens obtained from lung biopsies of 4 IPF patients, on one IPF-derived human primary cell and on 11 cases of IPF associated with cancer. In silico re-analysis demonstrated that the B4GALT1 gene was overexpressed in patients and human cell cultures with IPF (p = 0.03). Network analysis demonstrated that B4GALT1 upregulation was correlated with genes belonging to the EMT pathway (p = 0.01). The overexpression of B4GALT1 was observed, both at mRNA and protein levels, in lung biopsies of our four IPF patients and in the IPF-derived human primary cell, in other fibrotic non-lung tissues, and in IPF associated with cancer. In conclusion, our results indicate that B4GALT1 is overexpressed in IPF and could represent a novel marker of this disease.
Assuntos
Fibrose Pulmonar Idiopática , Neoplasias , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/patologia , Biomarcadores/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Neoplasias/metabolismoRESUMO
Metazoan living cells exposed to microgravity undergo dramatic changes in morphological and biological properties, which ultimately lead to apoptosis and phenotype reprogramming. However, apoptosis can occur at very different rates depending on the experimental model, and in some cases, cells seem to be paradoxically protected from programmed cell death during weightlessness. These controversial results can be explained by considering the notion that the behavior of adherent cells dramatically diverges in respect to that of detached cells, organized into organoids-like, floating structures. We investigated both normal (MCF10A) and cancerous (MCF-7) breast cells and found that appreciable apoptosis occurs only after 72 h in MCF-7 cells growing in organoid-like structures, in which major modifications of cytoskeleton components were observed. Indeed, preserving cell attachment to the substrate allows cells to upregulate distinct Akt- and ERK-dependent pathways in MCF-7 and MCF-10A cells, respectively. These findings show that survival strategies may differ between cell types but cannot provide sufficient protection against weightlessness-induced apoptosis alone if adhesion to the substrate is perturbed.
Assuntos
Apoptose , Neoplasias da Mama/metabolismo , Ausência de Peso , Adesão Celular , Linhagem Celular , Sobrevivência Celular , Citoesqueleto/metabolismo , Proteínas da Matriz Extracelular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Células MCF-7 , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de SinaisRESUMO
Overactivation of the c-MET/HGF system is a feature of many cancers. We previously reported that type II testicular germ cell tumor (TGCT) cells express the c-MET receptor, forming non-seminomatous lesions that are more positive compared with seminomatous ones. Notably, we also demonstrated that NT2D1 non-seminomatous cells (derived from an embryonal carcinoma lesion) increase their proliferation, migration, and invasion in response to HGF. Herein, we report that HGF immunoreactivity is more evident in the microenvironment of embryonal carcinoma biopsies with respect to seminomatous ones, indicating a tumor-dependent modulation of the testicular niche. PI3K/AKT is one of the signaling pathways triggered by HGF through the c-MET activation cascade. Herein, we demonstrated that phospho-AKT increases in NT2D1 cells after HGF stimulation. Moreover, we found that this pathway is involved in HGF-dependent NT2D1 cell proliferation, migration, and invasion, since the co-administration of the PI3K inhibitor LY294002 together with HGF abrogates these responses. Notably, the inhibition of endogenous PI3K affects collective cell migration but does not influence proliferation or chemotactic activity. Surprisingly, LY294002 administered without the co-administration of HGF increases cell invasion at levels comparable to the HGF-administered samples. This paradoxical result highlights the role of the testicular microenvironment in the modulation of cellular responses and stimulates the study of the testicular secretome in cancer lesions.
Assuntos
Carcinoma Embrionário/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Neoplasias Testiculares/metabolismo , Carcinoma Embrionário/genética , Carcinoma Embrionário/patologia , Linhagem Celular Tumoral , Fator de Crescimento de Hepatócito/genética , Humanos , Masculino , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Neoplasias Testiculares/genéticaRESUMO
: c-MET pathway over-activation is the signature of malignancy acquisition or chemotherapy resistance of many cancers. We recently demonstrated that type II Testicular Germ Cell Tumours (TGCTs) express c-MET receptor. In particular, we elucidated that the non-seminoma lesions express c-MET protein at higher level, compared with the seminoma ones. In line with this observation, NTERA-2 clone D1 (NT2D1) non-seminoma cells increase their proliferation, migration and invasion in response to Hepatocyte Growth Factor (HGF). One of the well-known adaptor-proteins belonging to c-MET signaling cascade is c-Src. Activation of c-Src is related to the increase of aggressiveness of many cancers. For this reason, we focused on the role of c-Src in c-MET-triggered and HGF-dependent NT2D1 cell activities. In the present paper, we have elucidated that this adaptor-protein is involved in HGF-dependent NT2D1 cell proliferation, migration and invasion, since Src inhibitor-1 administration abrogates these responses. Despite these biological evidences western blot analyses have not revealed the increase of c-Src activation because of HGF administration. However, notably, immunofluorescence analyses revealed that cytoplasmic and membrane-associated localization of c-Src shifted to the nuclear compartment after HGF stimulation. These results shed new light in the modality of HGF-dependent c-Src recruitment, and put the basis for novel investigations on the relationship between c-Src, and TGCT aggressiveness.
Assuntos
Fator de Crescimento de Hepatócito/genética , Neoplasias Embrionárias de Células Germinativas/genética , Proteínas Proto-Oncogênicas c-met/genética , Neoplasias Testiculares/genética , Quinases da Família src/genética , Proteína Tirosina Quinase CSK , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Embrionárias de Células Germinativas/patologia , Fosforilação , Seminoma/genética , Seminoma/patologia , Transdução de Sinais , Neoplasias Testiculares/patologiaRESUMO
Some yet unidentified factors released by both oocyte and embryonic microenvironments demonstrated to be non-permissive for tumor development and display the remarkable ability to foster cell/tissue reprogramming, thus ultimately reversing the malignant phenotype. In the present study we observed how molecular factors extracted from Zebrafish embryos during specific developmental phases (20 somites) significantly antagonize proliferation of breast cancer cells, while reversing a number of prominent aspects of malignancy. Embryo extracts reduce cell proliferation, enhance apoptosis, and dramatically inhibit both invasiveness and migrating capabilities of cancer cells. Counteracting the invasive phenotype is a relevant issue in controlling tumor spreading and metastasis. Moreover, such effect is not limited to cancerous cells as embryo extracts were also effective in inhibiting migration and invasiveness displayed by normal breast cells undergoing epithelial-mesenchymal transition upon TGF-ß1 stimulation. The reversion program involves the modulation of E-cadherin/ß-catenin pathway, cytoskeleton remodeling with dramatic reduction in vinculin, as well as downregulation of TCTP and the concomitant increase in p53 levels. Our findings highlight that-contrary to the prevailing current "dogma", which posits that neoplastic cells are irreversibly "committed"-the malignant phenotype can ultimately be "reversed", at least partially, in response to environmental morphogenetic influences.
Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Embrião não Mamífero/química , Extratos de Tecidos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Regulação para Baixo , Humanos , Fenótipo , Proteína Tumoral 1 Controlada por Tradução , Peixe-Zebra , beta Catenina/metabolismoRESUMO
Cigarette smoking is a recognized risk factor for colon cancer and nicotine, the principal active component of tobacco, plays a pivotal role in increasing colon cancer cell growth and survival. The aim of this study was to determine the effect of nicotine on cellular Caco-2 and HCT-8 migration and invasion, focusing on epithelial to mesenchymal transition (EMT) induction, and COX-2 pathway involvement. In both these cell lines, treatment with nicotine increased COX-2 expression and the release of its enzymatic product PGE2 . Moreover, nicotine-stimulated cells showed increased migratory and invasive behavior, mesenchymal markers up-regulation and epithelial markers down-regulation, nuclear translocation of the ß-catenin, increase of MMP-2 and MMP-9 activity, and enhanced NF-κB expression. Noticeably, all these effects are largely mediated by COX-2 activity, as simultaneous treatment of both cell lines with nicotine and NS-398, a selective COX-2 inhibitor, greatly reduced the number of migrating and invading cells and reverted nicotine-induced EMT. These findings emphasize that nicotine triggers EMT, leading hence to increased migration and invasiveness of colon cancer cells. Thereby, the use of COX-2 inhibitor drugs might likely counteract nicotine-mediated EMT effects on colon cancer development and progression.
Assuntos
Carcinógenos/toxicidade , Movimento Celular/efeitos dos fármacos , Neoplasias do Colo/enzimologia , Ciclo-Oxigenase 2/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Nicotina/toxicidade , Antígenos CD/metabolismo , Antineoplásicos/farmacologia , Células CACO-2 , Caderinas/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Dinoprostona/metabolismo , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Invasividade Neoplásica , Nitrobenzenos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , beta Catenina/metabolismoRESUMO
BACKGROUND: Glioblastoma multiforme (GBM) is a highly aggressive brain tumor in which cancer cells with stem cell-like features, called cancer stem cells (CSCs), were identified. Two CSC populations have been previously identified in GBM, one derived from the GBM area called enhanced lesion (GCSCs) and the other one from the brain area adjacent to the tumor margin (PCSCs) that greatly differ in their growth properties and tumor-initiating ability. To date the most effective chemotherapy to treat GBM is represented by alkylating agents such as temozolomide (TMZ), whose activity can be regulated by histone deacetylases (HDACs) inhibitors through the modulation of O6-methylguanine-DNA methyltransferase (MGMT) expression. Levetiracetam (LEV), a relatively new antiepileptic drug, modulates HDAC levels ultimately silencing MGMT, thus increasing TMZ effectiveness. However, an improvement in the therapeutic efficacy of TMZ is needed. METHODS: Cell proliferation was investigated by BrdU cell proliferation assay and by Western Blot analysis of PCNA expression. Apoptosis was evaluated by Western Blot and Immunofluorescence analysis of the cleaved Caspase-3 expression. MGMT and HDAC4 expression was analyzed by Western Blotting and Immunofluorescence. Statistical analysis was performed using the Student's t test and Mann-Whitney test. RESULTS: Here we evaluated the effect of TMZ on the proliferation rate of the IDH-wildtype GCSCs and PCSCs derived from six patients, in comparison with the effects of other drugs such as etoposide, irinotecan and carboplatin. Our results demonstrated that TMZ was less effective compared to the other agents; hence, we verified the possibility to increase the effect of TMZ by combining it with LEV. Here we show that LEV enhances the effect of TMZ on GCSCs proliferation (being less effective on PCSCs) by decreasing MGMT expression, promoting HDAC4 nuclear translocation and activating apoptotic pathway. CONCLUSIONS: Although further studies are needed to determine the exact mechanism by which LEV makes GBM stem cells more sensitive to TMZ, these results suggest that the clinical therapeutic efficacy of TMZ in GBM might be enhanced by the combined treatment with LEV.
RESUMO
Through activation of the ERK pathway, nicotine, in both normal MCF-10A and low-malignant breast cancer cells (MCF7), promotes increased motility and invasiveness. Melatonin antagonizes both these effects by inhibiting almost completely ERK phosphorylation. As melatonin has no effect on nonstimulated cells, it is likely that melatonin can counteract ERK activation only downstream of nicotine-induced activation. This finding suggests that melatonin hampers ERK phosphorylation presumably by targeting a still unknown intermediate factor that connects nicotine stimulation to ERK phosphorylation. Furthermore, downstream of ERK activation, melatonin significantly reduces fascin and calpain activation while restoring normal vinculin levels. Melatonin also counteracts nicotine effects by reshaping the overall cytoskeleton architecture and abolishing invasive membrane protrusion. In addition, melatonin decreases nicotine-dependent ROCK1/ROCK2 activation, thus further inhibiting cell contractility and motility. Melatonin actions are most likely attributable to ERK inhibition, although melatonin could display other ERK-independent effects, namely through a direct modulation of additional molecular and structural factors, including coronin, cofilin, and cytoskeleton components.
Assuntos
Adenocarcinoma/patologia , Neoplasias da Mama/patologia , Movimento Celular/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melatonina/farmacologia , Humanos , Células MCF-7 , Invasividade Neoplásica/patologia , Nicotina/toxicidade , Agonistas Nicotínicos/toxicidade , FosforilaçãoRESUMO
Duchenne muscular dystrophy (DMD) is characterized by progressive lethal muscle degeneration and chronic inflammatory response. The mdx mouse strain has served as the animal model for human DMD. However, while DMD patients undergo extensive necrosis, the affected muscles of adult mdx mice rapidly regenerates and regains structural and functional integrity. The basis for the mild effects observed in mice compared with the lethal consequences in humans remains unknown. In this study, we provide evidence that interleukin-6 (IL-6) is causally linked to the pathogenesis of muscular dystrophy. We report that forced expression of IL-6, in the adult mdx mice, recapitulates the severe phenotypic characteristics of DMD in humans. Increased levels of IL-6 exacerbate the dystrophic muscle phenotype, sustaining inflammatory response and repeated cycles of muscle degeneration and regeneration, leading to exhaustion of satellite cells. The mdx/IL6 mouse closely approximates the human disease and more faithfully recapitulates the disease progression in humans. This study promises to significantly advance our understanding of the pathogenic mechanisms that lead to DMD.
Assuntos
Interleucina-6/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Animais , Regulação para Baixo , Interleucina-6/genética , Camundongos , Camundongos Endogâmicos mdx , Desenvolvimento Muscular , Músculo Esquelético/patologia , Fenótipo , Proteínas Serina-Treonina Quinases/metabolismo , Células Satélites de Músculo Esquelético/patologia , Células-Tronco/patologia , Quinase Induzida por NF-kappaBRESUMO
Inositol displays multi-targeted effects on many biochemical pathways involved in epithelial-mesenchymal transition (EMT). As Akt activation is inhibited by inositol, we investigated if such effect could hamper EMT in MDA-MB-231 breast cancer cells. In cancer cells treated with pharmacological doses of inositol E-cadherin was increased, ß-catenin was redistributed behind cell membrane, and metalloproteinase-9 was significantly reduced, while motility and invading capacity were severely inhibited. Those changes were associated with a significant down-regulation of PI3K/Akt activity, leading to a decrease in downstream signaling effectors: NF-kB, COX-2, and SNAI1. Inositol-mediated inhibition of PS1 leads to lowered Notch 1 release, thus contributing in decreasing SNAI1 levels. Overall, these data indicated that inositol inhibits the principal molecular pathway supporting EMT. Similar results were obtained in ZR-75, a highly metastatic breast cancer line. These findings are coupled with significant changes on cytoskeleton. Inositol slowed-down vimentin expression in cells placed behind the wound-healing edge and stabilized cortical F-actin. Moreover, lamellipodia and filopodia, two specific membrane extensions enabling cell migration and invasiveness, were no longer detectable after inositol addiction. Additionally, fascin and cofilin, two mandatory required components for F-actin assembling within cell protrusions, were highly reduced. These data suggest that inositol may induce an EMT reversion in breast cancer cells, suppressing motility and invasiveness through cytoskeleton modifications.
Assuntos
Neoplasias da Mama/patologia , Citoesqueleto/patologia , Células Epiteliais/patologia , Inositol/farmacologia , Mesoderma/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Caderinas/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Feminino , Humanos , Immunoblotting , Mesoderma/efeitos dos fármacos , Proteínas dos Microfilamentos/metabolismo , NF-kappa B/metabolismo , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Presenilina-1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Vimentina/metabolismo , Cicatrização/efeitos dos fármacos , beta Catenina/metabolismo , Quinases Associadas a rho/metabolismoRESUMO
BACKGROUND: Common variable immunodeficiency (CVID) is a heterogeneous disorder characterized by B-cell dysfunction and, in a subgroup, by expansion of CD21(low) B cells. The CD21(low) B cells display defects in early B-cell receptor (BCR) signaling resembling those of anergic B cells. OBJECTIVE: We sought to investigate whether B cells from patients with CVID, like anergic B cells, have defects in extracellular signal-regulated kinase (ERK) phosphorylation and in endocytic trafficking of the BCR. METHODS: Using flow cytometry, we evaluated phosphorylated ERK (pERK) expression and internalization of cross-linked BCR in B-cell subsets. The localization of internalized BCR to lysosome-associated membrane protein 1-positive late endosomes was evaluated with confocal microscopy. RESULTS: Constitutive pERK levels were increased in naive and IgM(+) memory B cells of patients with CVID compared with those of healthy donors, whereas the pERK increment induced by BCR cross-linking was relatively reduced. Intravenous immunoglobulin administration enhanced these anomalies, but they appeared to be intrinsic to B cells from patients with CVID. Cross-linking-induced BCR endocytosis was decreased in the IgM(+) memory B cells, especially in those with a CD21(low) phenotype, but not in the naive B cells of patients with CVID with CD21(low) expansion. Internalized BCR localized normally to late endosomes. Pharmacologic inhibition of ERK phosphorylation suppressed BCR endocytosis in B cells of healthy patients and those with CVID. CONCLUSIONS: The B cells of patients with CVID with CD21(low) B-cell expansion resemble anergic B cells based on high constitutive pERK expression. The IgM(+) memory B cells of these patients, especially those that are CD21(low), have a defect in BCR endocytosis seemingly caused by dysregulated ERK signaling.
Assuntos
Subpopulações de Linfócitos B/metabolismo , Imunodeficiência de Variável Comum/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Transdução de Sinais/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/patologia , Estudos de Casos e Controles , Imunodeficiência de Variável Comum/genética , Imunodeficiência de Variável Comum/imunologia , Imunodeficiência de Variável Comum/patologia , Endocitose , Endossomos/imunologia , Endossomos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , Feminino , Regulação da Expressão Gênica , Humanos , Imunoglobulina M/genética , Imunoglobulina M/imunologia , Imunoglobulinas Intravenosas/administração & dosagem , Memória Imunológica , Proteínas de Membrana Lisossomal/genética , Proteínas de Membrana Lisossomal/imunologia , Masculino , Pessoa de Meia-Idade , Fosforilação , Transporte Proteico , Receptores de Antígenos de Linfócitos B/genética , Receptores de Complemento 3d/genética , Receptores de Complemento 3d/imunologiaRESUMO
BACKGROUND AND AIM: Breast cancer remains a leading cause of mortality among women. In metastasis, cascade migration of cancer cells and invasion of extracellular matrix (ECM) represent critical steps. Urokinase-type plasminogen activator (uPA), as well as metalloproteinases MMP-2 and MMP-9, strongly contribute to ECM remodelling, thus becoming associated with tumour migration and invasion. In addition, the high expression of cytoskeletal (CSK) proteins, as fascin, has been correlated with clinically aggressive metastatic tumours, and CSK proteins are thought to affect the migration of cancer cells. Consumption of fruits and vegetables, characterized by high procyanidin content, has been associated to a reduced mortality for breast cancer. Therefore, we investigated the biological effect of grape seed extract (GSE) on the highly metastatic MDA-MB231 breast cancer cell line, focusing on studying GSE ability in inhibiting two main metastatic processes, i.e., cell migration and invasion. METHODS: After MDA-MB231 breast cancer cells stimulated with GSE migration and invasion were evaluated by means of trans-well assays and uPA as well as MMPs activity was detected by gelatin zymography. Fascin, ß-catenin and nuclear factor-κB (NF-κB) expression were determined using western blot technique. ß-Catenin localization was observed by confocal microscopy. RESULTS: We observed that high concentrations of GSE inhibited cell proliferation and apoptosis. Conversely, low GSE concentration decreased cell migration and invasion, likely by hampering ß-catenin expression and localization, fascin and NF-κB expression, as well as by decreasing the activity of uPA, MMP-2 and MMP-9. CONCLUSIONS: These results make GSE a powerful candidate for developing preventive agents against cancer metastasis.
Assuntos
Neoplasias da Mama/patologia , Movimento Celular/efeitos dos fármacos , Extrato de Sementes de Uva/farmacologia , Invasividade Neoplásica/prevenção & controle , Apoptose/efeitos dos fármacos , Neoplasias da Mama/química , Proteínas de Transporte/análise , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Metaloproteinases da Matriz/efeitos dos fármacos , Metaloproteinases da Matriz/metabolismo , Proteínas dos Microfilamentos/análise , NF-kappa B/análise , Ativador de Plasminogênio Tipo Uroquinase/efeitos dos fármacos , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , beta Catenina/análiseRESUMO
Ctcf (CCCTC-binding factor) directly induces Parp [poly(ADP-ribose) polymerase] 1 activity and its PARylation [poly(ADPribosyl)ation] in the absence of DNA damage. Ctcf, in turn, is a substrate for this post-synthetic modification and as such it is covalently and non-covalently modified by PARs (ADP-ribose polymers). Moreover, PARylation is able to protect certain DNA regions bound by Ctcf from DNA methylation. We recently reported that de novo methylation of Ctcf target sequences due to overexpression of Parg [poly(ADP-ribose)glycohydrolase] induces loss of Ctcf binding. Considering this, we investigate to what extent PARP activity is able to affect nuclear distribution of Ctcf in the present study. Notably, Ctcf lost its diffuse nuclear localization following PAR (ADP-ribose polymer) depletion and accumulated at the periphery of the nucleus where it was linked with nuclear pore complex proteins remaining external to the perinuclear Lamin B1 ring. We demonstrated that PAR depletion-dependent perinuclear localization of Ctcf was due to its blockage from entering the nucleus. Besides Ctcf nuclear delocalization, the outcome of PAR depletion led to changes in chromatin architecture. Immunofluorescence analyses indicated DNA redistribution, a generalized genomic hypermethylation and an increase of inactive compared with active chromatin marks in Parg-overexpressing or Ctcf-silenced cells. Together these results underline the importance of the cross-talk between Parp1 and Ctcf in the maintenance of nuclear organization.
Assuntos
Adenosina Difosfato Ribose/metabolismo , Proteínas Repressoras/metabolismo , Transporte Ativo do Núcleo Celular , Substituição de Aminoácidos , Animais , Fator de Ligação a CCCTC , Linhagem Celular , Núcleo Celular/metabolismo , Montagem e Desmontagem da Cromatina , Metilação de DNA , Técnicas de Silenciamento de Genes , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Laminas/metabolismo , Camundongos , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genéticaRESUMO
Urinary tract infections (UTIs) are the most common bacterial infections and uropathogenic Escherichia coli (UPEC) is the main etiological agent of UTIs. UPEC can persist in bladder cells protected by immunological defenses and antibiotics and intracellular behavior leads to difficulty in eradicating the infection. The aim of this paper is to design, prepare and characterize surfactant-based nanocarriers (niosomes) able to entrap antimicrobial drug and potentially to delivery and release antibiotics into UPEC-infected cells. In order to validate the proposed drug delivery system, gentamicin, was chosen as "active model drug" due to its poor cellular penetration. The niosomes physical-chemical characterization was performed combining different techniques: Dynamic Light Scattering Fluorescence Spectroscopy, Transmission Electron Microscopy. Empty and loaded niosomes were characterized in terms of size, ζ-potential, bilayer features and stability. Moreover, Gentamicin entrapped amount was evaluated, and the release study was also carried out. In addition, the effect of empty and loaded niosomes was studied on the invasion ability of UPEC strains in T24 bladder cell monolayers by Gentamicin Protection Assay and Confocal Microscopy. The observed decrease in UPEC invasion rate leads us to hypothesize a release of antibiotic from niosomes inside the cells. The optimization of the proposed drug delivery system could represent a promising strategy to significatively enhance the internalization of antimicrobial drugs.
Assuntos
Antibacterianos , Gentamicinas , Lipossomos , Escherichia coli Uropatogênica , Gentamicinas/farmacologia , Escherichia coli Uropatogênica/efeitos dos fármacos , Humanos , Antibacterianos/farmacologia , Portadores de Fármacos/química , Infecções Urinárias/microbiologia , Infecções Urinárias/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Testes de Sensibilidade MicrobianaRESUMO
Epithelial-Mesenchymal Transition (EMT), triggered by external and internal cues in several physiological and pathological conditions, elicits the transformation of epithelial cells into a mesenchymal-like phenotype. During EMT, epithelial cells lose cell-to-cell contact and acquire unusual motility/invasive capabilities. The associated architectural and functional changes destabilize the epithelial layer consistency, allowing cells to migrate and invade the surrounding tissues. EMT is a critical step in the progression of inflammation and cancer, often sustained by a main driving factor as the transforming growth factor-ß1 (TGF-ß1). Antagonizing EMT has recently gained momentum as an attractive issue in cancer treatment and metastasis prevention. Herein, we demonstrate the capability of myo-inositol (myo-Ins) to revert the EMT process induced by TGF-ß1 on MCF-10A breast cells. Upon TGF-ß1 addition, cells underwent a dramatic phenotypic transformation, as witnessed by structural (disappearance of the E-cadherin-ß-catenin complexes and the emergence of a mesenchymal shape) and molecular modifications (increase in N-cadherin, Snai1, and vimentin), including the release of increased collagen and fibronectin. However, following myo-Ins, those changes were almost completely reverted. Inositol promotes the reconstitution of E-cadherin-ß-catenin complexes, decreasing the expression of genes involved in EMT, while promoting the re-expression of epithelial genes (keratin-18 and E-cadherin). Noticeably, myo-Ins efficiently inhibits the invasiveness and migrating capability of TGF-ß1 treated cells, also reducing the release of metalloproteinase (MMP-9) altogether with collagen synthesis, allowing for the re-establishment of appropriate cell-to-cell junctions, ultimately leading the cell layer back towards a more compact state. Inositol effects were nullified by previous treatment with an siRNA construct to inhibit CDH1 transcripts and, hence, E-cadherin synthesis. This finding suggests that the reconstitution of E-cadherin complexes is an irreplaceable step in the inositol-induced reversion of EMT. Overall, such a result advocates for the useful role of myo-Ins in cancer treatment.
RESUMO
c-MET/hepatocyte growth factor (HGF) system deregulation is a well-known feature of malignancy in several solid tumors, and for this reason this system and its pathway have been considered as potential targets for therapeutic purposes. In previous manuscripts we reported c-MET/HGF expression and the role in testicular germ cell tumors (TGCTs) derived cell lines. We demonstrated the key role of c-Src and phosphatidylinositol 3-kinase (PI3K)/AKT adaptors in the HGF-dependent malignant behavior of the embryonal carcinoma cell line NT2D1, finding that the inhibition of these onco-adaptor proteins abrogates HGF triggered responses such as proliferation, migration, and invasion. Expanding on these previous studies, herein we investigated the role of mitogen-activated protein kinase (MAPK)/extracellular signal regulated kinase (ERK) pathways in the HGF-dependent and HGF-independent NT2D1 cells biological responses. To inhibit MAPK/ERK pathways we chose a pharmacological approach, by using U0126 inhibitor, and we analyzed cell proliferation, collective migration, and chemotaxis. The administration of U0126 together with HGF reverts the HGF-dependent activation of cell proliferation but, surprisingly, does not exert the same effect on NT2D1 cell migration. In addition, we found that the use of U0126 alone significantly promotes the acquisition of NT2D1 «migrating phenotype¼, while collective migration of NT2D1 cells was stimulated. Notably, the inhibition of ERK activation in the absence of HGF stimulation resulted in the activation of the AKT-mediated pathway, and this let us speculate that the paradoxical effects obtained by using U0126, which are the increase of collective migration and the acquisition of partial epithelium-mesenchyme transition (pEMT), are the result of compensatory pathways activation. These data highlight how the specific response to pathway inhibitors, should be investigated in depth before setting up therapy.
RESUMO
One of the hallmarks of microgravity-induced effects in several cellular models is represented by the alteration of oxidative balance with the consequent accumulation of reactive oxygen species (ROS). It is well known that male germ cells are sensitive to oxidative stress and to changes in gravitational force, even though published data on germ cell models are scarce. We previously studied the effects of simulated microgravity (s-microgravity) on a 2D cultured TCam-2 seminoma-derived cell line, considered the only human cell line available to study in vitro mitotically active human male germ cells. In this study, we used a corresponding TCam-2 3D cell culture model that mimics cell-cell contacts in organ tissue to test the possible effects induced by s-microgravity exposure. TCam-2 cell spheroids were cultured for 24 h under unitary gravity (Ctr) or s-microgravity conditions, the latter obtained using a random positioning machine (RPM). A significant increase in intracellular ROS and mitochondria superoxide anion levels was observed after RPM exposure. In line with these results, a trend of protein and lipid oxidation increase and increased pCAMKII expression levels were observed after RPM exposure. The ultrastructural analysis via transmission electron microscopy revealed that RPM-exposed mitochondria appeared enlarged and, even if seldom, disrupted. Notably, even the expression of the main enzymes involved in the redox homeostasis appears modulated by RPM exposure in a compensatory way, with GPX1, NCF1, and CYBB being downregulated, whereas NOX4 and HMOX1 are upregulated. Interestingly, HMOX1 is involved in the heme catabolism of mitochondria cytochromes, and therefore the positive modulation of this marker can be associated with the observed mitochondria alteration. Altogether, these data demonstrate TCam-2 spheroid sensitivity to acute s-microgravity exposure and indicate the capability of these cells to trigger compensatory mechanisms that allow them to overcome the exposure to altered gravitational force.
Assuntos
Antioxidantes , Ausência de Peso , Humanos , Masculino , Espécies Reativas de Oxigênio , Mitocôndrias , Esferoides CelularesRESUMO
The hepatocyte growth factor (HGF) is a pleiotropic cytokine and a well-known regulator of mouse embryonic organogenesis. In previous papers, we have shown the expression pattern of HGF and its receptor, C-MET, during the different stages of testis prenatal development. We demonstrated that C-MET is expressed in fetal Leydig cells (FLCs) and that HGF stimulates testosterone secretion in organ culture of late fetal testes. In the present study, we analyzed the proliferation rate, apoptotic index, and differentiation of FLCs in testicular organ culture of 17.5 days postcoitum (17.5 dpc) embryos to clarify the physiological role of HGF in late testis organogenesis. Based on our data, we conclude the following: 1) HGF acts as an antiapoptotic factor that is able to reduce the number of apoptotic FLCs and testicular caspase-3 active fragment; 2) HGF does not affect FLC proliferation; 3) HGF significantly increases expression of insulin-like 3 (INSL3), a marker of Leydig cell terminal differentiation, without affecting 3beta-hydroxysteroid dehydrogenase (3betaHSD) expression; 4) HGF significantly decreases the expression of nestin, a marker of Leydig cell progenitors; and 5) HGF significantly increases the number of fully developed FLCs. Taken together, these observations demonstrate that HGF is able to act in vitro as a survival and differentiation factor in FLC population.