Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Ind Med ; 65(1): 3-11, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34647336

RESUMO

Exposure science is fundamental to the field of occupational safety and health. The measurement of worker exposures to hazardous agents informs effective workplace risk mitigation strategies. The modern era of occupational exposure measurement began with the invention of the personal sampling device, which is still widely used today in the practice of occupational hygiene. Newer direct-reading sensor devices are incorporating recent advances in transducers, nanomaterials, electronics miniaturization, portability, batteries with high-power density, wireless communication, energy-efficient microprocessing, and display technology to usher in a new era in exposure science. Commercial applications of new sensor technologies have led to a variety of health and lifestyle management devices for everyday life. These applications are also being investigated as tools to measure occupational and environmental exposures. As the next-generation placeable, wearable, and implantable sensor technologies move from the research laboratory to the workplace, their role in the future of work will be of increasing importance to employers, workers, and occupational safety and health researchers and practitioners. This commentary discusses some of the benefits and challenges of placeable, wearable, and implantable sensor technologies in the future of work.


Assuntos
Exposição Ocupacional , Saúde Ocupacional , Dispositivos Eletrônicos Vestíveis , Humanos , Exposição Ocupacional/efeitos adversos , Tecnologia , Local de Trabalho
2.
Sensors (Basel) ; 22(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35808337

RESUMO

Over the last decade, technological advancements have been made available and applied in a wide range of applications in several work fields, ranging from personal to industrial enforcements. One of the emerging issues concerns occupational safety and health in the Fourth Industrial Revolution and, in more detail, it deals with how industrial hygienists could improve the risk-assessment process. A possible way to achieve these aims is the adoption of new exposure-monitoring tools. In this study, a systematic review of the up-to-date scientific literature has been performed to identify and discuss the most-used sensors that could be useful for occupational risk assessment, with the intent of highlighting their pros and cons. A total of 40 papers have been included in this manuscript. The results show that sensors able to investigate airborne pollutants (i.e., gaseous pollutants and particulate matter), environmental conditions, physical agents, and workers' postures could be usefully adopted in the risk-assessment process, since they could report significant data without significantly interfering with the job activities of the investigated subjects. To date, there are only few "next-generation" monitors and sensors (NGMSs) that could be effectively used on the workplace to preserve human health. Due to this fact, the development and the validation of new NGMSs will be crucial in the upcoming years, to adopt these technologies in occupational-risk assessment.


Assuntos
Poluentes Ambientais , Saúde Ocupacional , Humanos , Material Particulado/análise , Medição de Risco , Tecnologia , Local de Trabalho
3.
J Occup Environ Hyg ; 19(12): 730-741, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36219680

RESUMO

With the advent of new sensing technologies and robust field-deployable analyzers, monitoring approaches can now generate valuable hazard information directly in the workplace. This is the case for monitoring respirable dust and respirable crystalline silica concentration levels. Estimating the quartz amount of a respirable dust sample by nondestructive analysis can be carried out using portable Fourier transform infrared spectroscopy (FTIR) units. Real-time respirable dust monitors, combined with small video cameras, allow advanced assessments using the Helmet-CAM methodology. These two field-based monitoring approaches, developed by the National Institute for Occupational Safety and Health (NIOSH), have been trialed in a sandstone quarry. Twenty-six Helmet-CAM sessions were conducted, and forty-one dust samples were collected around the quarry and analyzed on-site during two events. The generated data generated were used to characterize concentration levels for the monitored areas and workers, to identify good practices, and to illustrate activities that could be improved with additional engineered control technologies. Laboratory analysis of the collected samples complemented the field finding and provided an assessment of the performance of the field-based techniques. Only a fraction of the real-time respirable dust monitoring sessions data could be corrected with laboratory analysis. The average correction factor ratio was 5.0. Nevertheless, Helmet-CAM results provided valuable information for each session. The field-based quartz monitoring approach overestimated the concentration by a factor of 1.8, but it successfully assessed the quartz concentration trends in the quarry. The data collected could be used for the determination of a quarry calibration factor for future events. The quartz content in the dust was found to vary from 14% to 100%, and this indicates the need for multiple techniques in the characterization of respirable dust and quartz concentration and exposure. Overall, this study reports the importance of the adoption of field-based monitoring techniques when combined with a proper understanding and knowledge of the capabilities and limitations of each technique.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Humanos , Dióxido de Silício/análise , Poeira/análise , Quartzo/análise , Exposição Ocupacional/prevenção & controle , Exposição Ocupacional/análise , Exposição por Inalação/prevenção & controle , Exposição por Inalação/análise , Monitoramento Ambiental/métodos , Poluentes Ocupacionais do Ar/análise
4.
J Occup Environ Hyg ; 19(12): 696-705, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36197119

RESUMO

With advances in technology, there are an increasing number of direct-reading instruments available to occupational health and safety professionals to evaluate occupational aerosol exposures. Despite the wide array of direct-reading instruments available to professionals, the adoption of direct-reading technology to monitor workplace exposures has been limited, partly due to a lack of knowledge on how the instruments operate, how to select an appropriate instrument, and challenges in data analysis techniques. This paper presents a review of direct-reading aerosol instruments available to occupational health and safety professionals, describes the principles of operation, guides instrument selection based on the workplace and exposure, and discusses data analysis techniques to overcome these barriers to adoption. This paper does not cover all direct-reading instruments for aerosols but only those that an occupational health and safety professional could use in a workplace to evaluate exposures. Therefore, this paper focuses on instruments that have the most potential for workplace use due to their robustness, past workplace use, and price with regard to return on investment. The instruments covered in this paper include those that measure aerosol number concentration, mass concentration, and aerosol size distributions.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Saúde Ocupacional , Humanos , Poluentes Ocupacionais do Ar/análise , Tamanho da Partícula , Monitoramento Ambiental/métodos , Leitura , Exposição Ocupacional/prevenção & controle , Exposição Ocupacional/análise , Aerossóis/análise
5.
Sensors (Basel) ; 21(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209443

RESUMO

In the last years, the issue of exposure assessment of airborne pollutants has been on the rise, both in the environmental and occupational fields. Increasingly severe national and international air quality standards, indoor air guidance values, and exposure limit values have been developed to protect the health of the general population and workers; this issue required a significant and continuous improvement in monitoring technologies to allow the execution of proper exposure assessment studies. One of the most interesting aspects in this field is the development of the "next-generation" of airborne pollutants monitors and sensors (NGMS). The principal aim of this review is to analyze and characterize the state of the art and of NGMS and their practical applications in exposure assessment studies. A systematic review of the literature was performed analyzing outcomes from three different databases (Scopus, PubMed, Isi Web of Knowledge); a total of 67 scientific papers were analyzed. The reviewing process was conducting systematically with the aim to extrapolate information about the specifications, technologies, and applicability of NGMSs in both environmental and occupational exposure assessment. The principal results of this review show that the use of NGMSs is becoming increasingly common in the scientific community for both environmental and occupational exposure assessment. The available studies outlined that NGMSs cannot be used as reference instrumentation in air monitoring for regulatory purposes, but at the same time, they can be easily adapted to more specific applications, improving exposure assessment studies in terms of spatiotemporal resolution, wearability, and adaptability to different types of projects and applications. Nevertheless, improvements needed to further enhance NGMSs performances and allow their wider use in the field of exposure assessment are also discussed.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Humanos
6.
J Occup Environ Hyg ; 18(3): 103-109, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33476255

RESUMO

Field-based methods for the analysis of respirable crystalline silica are now possible with the availability of portable instrumentation. Such methods also require the use of cassettes that facilitate direct-on-filter analysis of field samples. Conventional sampling cassettes can be modified such that they are amenable to direct-on-filter analysis while remaining compatible with common respirable dust samplers. The required modifications are described herein, and one version of such an analysis-ready cassette is described and evaluated in comparison to more traditional cassette designs. The novel cassette was found to result in a slightly higher mass of collected respirable material (for the same sampling duration), though this is likely due to the conductive material of the cassettes, which prevents particle wall losses in comparison to the more commonly used styrene cassette material. Both types of cassettes demonstrated comparable predictability in terms of respirable crystalline silica in a sample.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Poluentes Ocupacionais do Ar/análise , Poeira/análise , Monitoramento Ambiental , Exposição por Inalação/análise , Exposição Ocupacional/análise , Dióxido de Silício/análise
7.
Anal Bioanal Chem ; 412(14): 3499-3508, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32285183

RESUMO

Due to the global need for energy and resources, many workers are involved in underground and surface mining operations where they can be exposed to potentially hazardous crystalline dust particles. Besides commonly known alpha quartz, a variety of other materials may be inhaled when a worker is exposed to airborne dust. To date, the challenge of rapid in-field monitoring, identification, differentiation, and quantification of those particles has not been solved satisfactorily, in part because conventional analytical techniques require laboratory environments, complex method handling, and tedious sample preparation procedures and are in part limited by the effects of particle size. Using a set of the three most abundant minerals in limestone mine dust (i.e., calcite, dolomite, and quartz) and real-world dust samples, we demonstrate that Fourier transform infrared (FTIR) spectroscopy in combination with appropriate multivariate data analysis strategies provides a versatile tool for the identification and quantification of the mineral composition in relative complex matrices. An innovative analytical method with the potential of in-field application for quantifying the relative mass of crystalline particles in mine dust has been developed using transmission and diffuse reflection infrared Fourier transform spectroscopy (DRIFTS) within a unified multivariate model. This proof-of-principle study shows how direct on-site quantification of crystalline particles in ambient air may be accomplished based on a direct-on-filter measurement, after mine dust particles are collected directly onto PVC filters by the worker using body-mounted devices. Without any further sample preparation, these loaded filters may be analyzed via transmission infrared (IR) spectroscopy and/or DRIFTS, and the mineral content is immediately quantified via a partial least squares regression (PLSR) algorithm that enables the combining of the spectral data of both methods into a single robust model. Furthermore, it was also demonstrated that the size regime of dust particles may be classified into groups of hazardous and less hazardous size regimes. Thus, this technique may provide additional essential information for controlling air quality in surface and underground mining operations. Graphical Abstract.

8.
J Occup Environ Hyg ; 16(3): 242-249, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30620243

RESUMO

A person-wearable dust monitor that provides nearly real-time, mass-based readings of respirable dust was developed for use in underground coal mines. This personal dust monitor (PDM) combined dust sampling instrumentation with a cap lamp (and battery) into one belt-wearable unit, with the air inlet mounted on the cap lamp. However, obsolescence of belt-carried cap lamp and batteries in coal mining ensued and led end users to request that the cap lamp and battery be removed from the PDM. Removal of these components necessitated the design of a new air inlet to be worn on the miner's lapel. The revised inlet was tested for dust collection equivalency against the original cap-mounted inlet design. Using calculated inlet respirable fractions and measured dust mass collection, the performance of the two inlets is shown to be similar. The new inlet requires a 1.02 factor for converting dust masses obtained from it to equivalent masses collected from the original inlet.


Assuntos
Poluentes Ocupacionais do Ar/análise , Carvão Mineral , Poeira/análise , Monitoramento Ambiental/instrumentação , Exposição por Inalação/análise , Exposição Ocupacional/análise , Minas de Carvão , Desenho de Equipamento , Humanos , Dispositivos Eletrônicos Vestíveis
9.
J Occup Environ Hyg ; 15(10): 732-742, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29985785

RESUMO

Monitoring worker exposure to respirable crystalline silica in dusty environments is an important part of a proactive health and safety program. This is the case for surface copper mines in Arizona and New Mexico. The spatial and temporal variability of respirable dust and crystalline silica concentrations in those mines, coupled with the time lapse in obtaining crystalline silica analysis results from accredited laboratories, present a challenge for an effective exposure monitoring approach and the resulting intervention strategies. The National Institute for Occupational Safety and Health (NIOSH) is developing a novel approach to be used at a mine site for the quantification of crystalline silica in respirable dust samples collected with traditional sampling techniques. The non-destructive analysis is carried out using a portable Fourier transform infrared spectroscopy (FTIR) unit. In this study, respirable dust samples were collected over two visits to each of five copper mines, for a total of 10 datasets. The silica in each respirable dust sample was estimated by analyzing the sample with the portable FTIR unit. The quality of the estimation was assessed using the results of the NIOSH 7500 method on the same samples. The confounding effect of other minerals present in the respirable dust in the mines was also assessed, and two quantification approaches were investigated to address it: a sector-specific and a mine-specific approach. The results showed that the sector-specific approach is not effective due to the high variability of relative composition of the minerals among mines. For this approach the combined average relative difference was -13% (-17.6%, -8.9% CI). When using the mine-specific quantification approach, the average relative difference was as low as 2.8% (-3.7%, 9.3% CI); however, this approach was still affected by the variable relative composition of the minerals in the dust in each mine. The use of a multivariate approach on the analysis of each sample was proposed as the next step to achieve consistent low relative differences. This study demonstrates the potential of using a portable FTIR for estimation of crystalline silica in respirable dust samples for in-field exposure monitoring.


Assuntos
Poluentes Ocupacionais do Ar/análise , Poeira/análise , Mineração , Dióxido de Silício/análise , Arizona , Cobre , Monitoramento Ambiental/métodos , Minerais/análise , National Institute for Occupational Safety and Health, U.S. , New Mexico , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Estados Unidos
10.
J Occup Environ Hyg ; 15(10): 755-765, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30095363

RESUMO

A newly developed high flow rate respirable size-selective cyclone sampler (GK4.162-also known as the Respirable Air Sampling Cyclone Aluminum Large (RASCAL)) was calibrated to determine its optimum operating flow rate. The Health and Safety Laboratory in the United Kingdom and two laboratories from the National Institute for Occupational Safety and Health in the United States conducted experiments using two different methods: (1) polydisperse aerosol and time-of-flight direct reading instrument (Aerodynamic Particle Sizer (APS)) and (2) monodisperse aerosol and APS. The measured performance data for the cyclone was assessed against the international respirable convention using the bias map approach. Although the GK4.162 cyclone was tested using different aerosols and detection methods, the results from the three laboratories were generally similar. The recommended flow rate based on the agreement of results from the laboratories was 9.0 L/min.


Assuntos
Aerossóis/análise , Poluentes Ocupacionais do Ar/análise , Monitoramento Ambiental/instrumentação , Tamanho da Partícula , Calibragem , Poeira/análise , Monitoramento Ambiental/métodos , Vidro/análise , Exposição por Inalação/análise , National Institute for Occupational Safety and Health, U.S. , Reino Unido , Estados Unidos
11.
J Occup Environ Hyg ; 15(10): 743-754, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29985762

RESUMO

Evaluation and control of respirable crystalline silica (RCS) exposures are critical components of an effective mine industrial hygiene program. To provide more timely exposure data in the field, an end-of-shift Fourier transform infrared (FT-IR) spectrometry method has been developed for evaluation of direct-on-filter RCS. The present study aimed to apply this FT-IR method using field samples collected in three Northwestern U.S. metal/nonmetal mines and compare the results to traditional laboratory X-ray diffraction analysis (XRD). Seventy-five dust samples were analyzed using both methods. Samples for each mine were split in half by random assignment, with half used to create a calibration factor for the FT-IR analysis and half used to apply the calibration. Nonparametric correlational and two-sample comparative tests were used to assess the strength of association and the level of agreement between the two methods. Strong, positive correlations were observed between FT-IR and XRD RCS concentrations, with Spearman rank correlation coefficients ranging between 0.84 and 0.97. The mean RCS concentrations determined through FT-IR analysis were lower than through XRD analysis, with mean differences ranging from -4 to -133 ug/m3 and mean percent errors ranging from 12% to 28%. There was a statistically significant improvement in the level of agreement between log FT-IR and log XRD RCS concentrations following calibration at two of the three mines, with mean differences of -0.03 (p = 0.002) and -0.02 (p = 0.044) in the log scale. The reduction in mean difference following calibration at the other mine was not statistically significant (mean log scale difference = -0.05, p = 0.215), but the differences between FT-IR and XRD were not significantly different without calibration (mean log scale difference = -0.07, p = 0.534). The results indicate that mine-specific calibration factors can improve the level of agreement between RCS concentrations determined via a field-based, end-of-shift FT-IR method in metal/non-metal mines as compared to traditional XRD analysis.


Assuntos
Poluentes Ocupacionais do Ar/análise , Dióxido de Silício/análise , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Difração de Raios X/métodos , Calibragem , Monitoramento Ambiental/métodos , Filtração/métodos , Mineração , Noroeste dos Estados Unidos
12.
J Occup Environ Hyg ; 15(1): 24-37, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29053936

RESUMO

The OSHA final rule on respirable crystalline silica (RCS) will require hydraulic fracturing companies to implement engineering controls to limit workers' exposure to RCS. RCS is generated by pneumatic transfer of quartz-containing sand during hydraulic fracturing operations. Chronic inhalation of RCS can lead to serious disease, including silicosis and lung cancer. NIOSH research identified at least seven sources where RCS aerosols were generated at hydraulic fracturing sites. NIOSH researchers developed an engineering control to address one of the largest sources of RCS aerosol generation, RCS escaping from thief hatches on the top of sand movers. The control, the NIOSH Mini-Baghouse Retrofit Assembly (NMBRA), mounts on the thief hatches. Unlike most commercially available engineering controls, the NMBRA has no moving parts and requires no power source. This article details the results of an evaluation of generation 3 of the NMBRA at a sand mine in Arkansas from May 19-21, 2015. During the evaluation, 168 area air samples were collected at 12 locations on and around a sand mover with and without the NMBRA installed. Analytical results for respirable dust and RCS indicated the use of the NMBRA effectively reduced concentrations of both respirable dust and RCS downwind of the thief hatches. Reductions of airborne respirable dust were estimated at 99+%; reductions in airborne RCS ranged from 98-99%. Analysis of bulk samples of the dust showed the likely presence of freshly fractured quartz, a particularly hazardous form of RCS. Use of an improved filter fabric and a larger area of filter cloth led to substantial improvements in filtration and pressures during these trials, as compared to the generation 2 NMBRA. Planned future design enhancements, including a weather cover, will increase the performance and durability of the NMBRA. Future trials are planned to evaluate the long-term operability of the technology.


Assuntos
Poluição do Ar/prevenção & controle , Poeira/análise , Filtração/instrumentação , Dióxido de Silício/análise , Poluentes Ocupacionais do Ar/análise , Arkansas , Desenho de Equipamento , Fraturamento Hidráulico , National Institute for Occupational Safety and Health, U.S. , Exposição Ocupacional/prevenção & controle , Quartzo/análise , Estados Unidos
13.
J Occup Environ Hyg ; 14(5): 335-342, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27792471

RESUMO

Aims of this study were to develop a respirable size-selective sampler for direct-on-filter (DoF) quartz measurement at the end-of-shift (EoS) using a portable Fourier transform infrared (FTIR) spectrometer and to determine its size-selective sampling performance. A new miniaturized sampler has been designed to have an effective particle deposition diameter close to the portable FTIR beam diameter (6 mm). The new sampler (named the EoS cyclone) was constructed using a 3D printer. The sampling efficiency of the EoS cyclone was determined using polydisperse glass sphere particles and a time-of-flight direct reading instrument. Respirable dust mass concentration and quartz absorbance levels of samples collected with the EoS cyclone were compared to those collected with the 10-mm nylon cyclone. The EoS cyclone operated at a flow rate of 1.2 l min-1 showed minimum bias compared to the international standard respirable convention. The use of the EoS cyclone induced respirable dust mass concentration results similar but significantly larger (5%) than those obtained from samples collected with 10-mm nylon cyclones. The sensitivity of the DoF-FTIR analysis in estimating quartz was found increased more than 10 times when the samples were collected with the EoS cyclone. The average particle deposition diameter was 8.8 mm in 60 samples. The newly developed user friendly EoS cyclone may provide a better sampling strategy in quartz exposure assessment with faster feedback.


Assuntos
Poeira/análise , Monitoramento Ambiental/instrumentação , Exposição por Inalação/análise , Exposição Ocupacional/análise , Quartzo/análise , Monitoramento Ambiental/métodos , Tamanho da Partícula , Impressão Tridimensional , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Ann Occup Hyg ; 60(2): 252-62, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26424805

RESUMO

A series of laboratory tests were conducted to assess the effects of Fe-containing fuel additives on aerosols emitted by a diesel engine retrofitted with a sintered metal filter (SMF) system. Emission measurements performed upstream and downstream of the SMF system were compared, for cases when the engine was fueled with neat ultralow sulfur diesel (ULSD) and with ULSD treated with two formulations of additives containing Fe-based catalysts. The effects were assessed for four steady-state engine operating conditions and one transient cycle. The results showed that the SMF system reduced the average total number and surface area concentrations of aerosols by more than 100-fold. The total mass and elemental carbon results confirmed that the SMF system was indeed very effective in the removal of diesel aerosols. When added at the recommended concentrations (30 p.p.m. of iron), the tested additives had minor adverse impacts on the number, surface area, and mass concentrations of filter-out (FOut) aerosols. For one of the test cases, the additives may have contributed to measurable concentrations of engine-out (EOut) nucleation mode aerosols. The additives had only a minor impact on the concentration and size distribution of volatile and semi-volatile FOut aerosols. Metal analysis showed that the introduction of Fe with the additives substantially increased Fe concentration in the EOut, but the SMF system was effective in removal of Fe-containing aerosols. The FOut Fe concentrations for all three tested fuels were found to be much lower than the corresponding EOut Fe concentrations for the case of untreated ULSD fuel. The results support recommendations that these additives should not be used in diesel engines unless they are equipped with exhaust filtration systems. Since the tested SMF system was found to be very efficient in removing Fe introduced by the additives, the use of these additives should not result in a measurable increase in emissions of de novo generated Fe-containing aerosols. The findings from this study should promote a better understanding of the benefits and challenges of using sintered metal systems and fuel additives to control the exposure of underground miners and other workers to diesel aerosols and gases.


Assuntos
Aerossóis/análise , Filtração/métodos , Gasolina , Ferro/análise , Emissões de Veículos/análise , Poluentes Ocupacionais do Ar/análise , Carbono/análise , Filtração/instrumentação , Gases/análise , Humanos , Metais , Mineração , Exposição Ocupacional/prevenção & controle , Tamanho da Partícula , Material Particulado/análise
15.
J Occup Environ Hyg ; 13(3): D39-45, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26558490

RESUMO

The exposure to respirable crystalline silica (RCS) in the mining industry is a recognized occupational hazard. The assessment and monitoring of the exposure to RCS is limited by two main factors: (1) variability of the silica percent in the mining dust and (2) lengthy off-site laboratory analysis of collected samples. The monitoring of respirable dust via traditional or real-time techniques is not adequate. A solution for on-site quantification of RCS in dust samples is being investigated by the Office of Mine Safety and Health Research, a division of the National Institute for Occupational Safety and Health. The use of portable Fourier transform infrared analyzers in conjunction with a direct-on-filter analysis approach is proposed. The progress made so far, the necessary steps in progress, and the application of the monitoring solution to a small data set is presented. When developed, the solution will allow operators to estimate RCS immediately after sampling, resulting in timelier monitoring of RCS for self-assessment of compliance at the end of the shift, more effective engineering monitoring, and better evaluation of control technologies.


Assuntos
Poluentes Ocupacionais do Ar/análise , Poeira/análise , Monitoramento Ambiental/métodos , Mineração , Dióxido de Silício/análise , Carvão Mineral , Humanos , Exposição por Inalação/análise , National Institute for Occupational Safety and Health, U.S. , Exposição Ocupacional/análise , Saúde Ocupacional , Estados Unidos
16.
J Occup Environ Hyg ; 13(6): D93-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26891196

RESUMO

High flow rate respirable size selective samplers, GK4.126 and FSP10 cyclones, were calibrated for thoracic-size selective sampling in two different laboratories. The National Institute for Occupational Safety and Health (NIOSH) utilized monodisperse ammonium fluorescein particles and scanning electron microscopy to determine the aerodynamic particle size of the monodisperse aerosol. Fluorescein intensity was measured to determine sampling efficiencies of the cyclones. The Health Safety and Laboratory (HSL) utilized a real time particle sizing instrument (Aerodynamic Particle Sizer) and polydisperse glass sphere particles and particle size distributions between the cyclone and reference sampler were compared. Sampling efficiency of the cyclones were compared to the thoracic convention defined by the American Conference of Governmental Industrial Hygienists (ACGIH)/Comité Européen de Normalisation (CEN)/International Standards Organization (ISO). The GK4.126 cyclone showed minimum bias compared to the thoracic convention at flow rates of 3.5 l min(-1) (NIOSH) and 2.7-3.3 l min(-1) (HSL) and the difference may be from the use of different test systems. In order to collect the most dust and reduce the limit of detection, HSL suggested using the upper end in range (3.3 l min(-1)). A flow rate of 3.4 l min(-1) would be a reasonable compromise, pending confirmation in other laboratories. The FSP10 cyclone showed minimum bias at the flow rate of 4.0 l min(-1) in the NIOSH laboratory test. The high flow rate thoracic-size selective samplers might be used for higher sample mass collection in order to meet analytical limits of quantification.


Assuntos
Aerossóis/análise , Poluentes Ocupacionais do Ar/análise , Poeira/análise , Monitoramento Ambiental/instrumentação , Filtração/instrumentação , Fluoresceína/análise , Calibragem , Exposição por Inalação/análise , Exposição Ocupacional/análise , Tamanho da Partícula , Estados Unidos
17.
J Occup Environ Hyg ; 13(8): 628-38, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27003622

RESUMO

Inhalation of respirable crystalline silica (RCS) is a significant risk to worker health during well completions operations (which include hydraulic fracturing) at conventional and unconventional oil and gas extraction sites. RCS is generated by pneumatic transfer of quartz-containing sand during hydraulic fracturing operations. National Institute for Occupational Safety and Health (NIOSH) researchers identified concentrations of RCS at hydraulic fracturing sites that exceed 10 times the Occupational Safety and Health Administration (OSHA) Permissible Exposure Limit (PEL) and up to 50 times the NIOSH Recommended Exposure Limit (REL). NIOSH research identified at least seven point sources of dust release at contemporary oil and gas extraction sites where RCS aerosols were generated. NIOSH researchers recommend the use of engineering controls wherever they can be implemented to limit the RCS released. A control developed to address one of the largest sources of RCS aerosol generation is the NIOSH mini-baghouse assembly, mounted on the thief hatches on top of the sand mover. This article details the results of a trial of the NIOSH mini-baghouse at a sand mine in Arkansas from November 18-21, 2013. During the trial, area air samples were collected at 12 locations on and around a sand mover with and without the mini-baghouse control installed. Analytical results for respirable dust and RCS indicate the use of the mini-baghouse effectively reduced both respirable dust and RCS downwind of the thief hatches. Reduction of airborne respirable dust ranged from 85-98%; reductions in airborne RCS ranged from 79-99%. A bulk sample of dust collected by the baghouse assembly showed the likely presence of freshly fractured quartz, a particularly hazardous form of RCS. Planned future design enhancements will increase the performance and durability of the mini-baghouse, including an improved bag clamp mechanism and upgraded filter fabric with a modified air-to-cloth ratio. Future trials are planned to determine additional respirable dust and RCS concentration reductions achieved through these design changes.


Assuntos
Fraturamento Hidráulico , Exposição por Inalação/prevenção & controle , Exposição Ocupacional/prevenção & controle , Material Particulado/toxicidade , Dióxido de Silício/toxicidade , Aerossóis , Arkansas , Poeira/prevenção & controle , Monitoramento Ambiental , Quartzo
18.
J Occup Environ Hyg ; 12(7): 421-30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25636081

RESUMO

The inhalation of toxic substances is a major threat to the health of miners, and dust containing respirable crystalline silica (α-quartz) is of particular concern, due to the recent rise in cases of coal workers' pneumoconiosis and silicosis in some U.S. mining regions. Currently, there is no field-portable instrument that can measure airborne α-quartz and give miners timely feedback on their exposure. The U.S. National Institute for Occupational Safety and Health (NIOSH) is therefore conducting studies to investigate technologies capable of end-of-shift or real-time measurement of airborne quartz. The present study focuses on the potential application of Fourier transform infrared (FT-IR) spectrometry conducted in the diffuse reflection (DR) mode as a technique for measuring α-quartz in respirable mine dust. A DR accessory was used to analyze lab-generated respirable samples of Min-U-Sil 5 (which contains more than 90% α-quartz) and coal dust, at mass loadings in the ranges of 100-600 µg and 600-5300 µg, respectively. The dust samples were deposited onto three different types of filters, borosilicate fiberglass, nylon, and polyvinyl chloride (PVC). The reflectance, R, was calculated by the ratio of a blank filter and a filter with deposited mine dust. Results suggest that for coal and pure quartz dusts deposited on 37 mm PVC filters, measurements of -log R correlate linearly with known amounts of quartz on filters, with R(2) values of approximately 0.99 and 0.94, respectively, for samples loaded up to ∼4000 µg. Additional tests were conducted to measure quartz in coal dusts deposited onto the borosilicate fiberglass and nylon filter media used in the NIOSH-developed Personal Dust Monitor (PDM). The nylon filter was shown to be amenable to DR analysis, but quantification of quartz is more accurate when the filter is "free," as opposed to being mounted in the PDM filter holder. The borosilicate fiberglass filters were shown to produce excessive interference, making quartz quantification impossible. It was concluded that, while the DR/FT-IR method is potentially useful for on-filter measurement of quartz in dust samples, the use of PVC filters produced the most accurate results.


Assuntos
Poluentes Ocupacionais do Ar/análise , Carvão Mineral/análise , Poeira/análise , Quartzo/análise , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Filtros de Ar , Minas de Carvão , National Institute for Occupational Safety and Health, U.S. , Exposição Ocupacional/análise , Estados Unidos
19.
Ann Occup Hyg ; 58(7): 860-76, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24817159

RESUMO

Adverse health effects caused by worker exposure to ultrafine particles have been detected in recent years. The scientific community focuses on the assessment of ultrafine aerosols in different microenvironments in order to determine the related worker exposure/dose levels. To this end, particle size distribution measurements have to be taken along with total particle number concentrations. The latter are obtainable through hand-held monitors. A portable particle size distribution analyzer (Nanoscan SMPS 3910, TSI Inc.) was recently commercialized, but so far no metrological assessment has been performed to characterize its performance with respect to well-established laboratory-based instruments such as the scanning mobility particle sizer (SMPS) spectrometer. The present paper compares the aerosol monitoring capability of the Nanoscan SMPS to the laboratory SMPS in order to evaluate whether the Nanoscan SMPS is suitable for field experiments designed to characterize particle exposure in different microenvironments. Tests were performed both in a Marple calm air chamber, where fresh diesel particulate matter and atomized dioctyl phthalate particles were monitored, and in microenvironments, where outdoor, urban, indoor aged, and indoor fresh aerosols were measured. Results show that the Nanoscan SMPS is able to properly measure the particle size distribution for each type of aerosol investigated, but it overestimates the total particle number concentration in the case of fresh aerosols. In particular, the test performed in the Marple chamber showed total concentrations up to twice those measured by the laboratory SMPS-likely because of the inability of the Nanoscan SMPS unipolar charger to properly charge aerosols made up of aggregated particles. Based on these findings, when field test exposure studies are conducted, the Nanoscan SMPS should be used in tandem with a condensation particle counter in order to verify and correct the particle size distribution data.


Assuntos
Monitoramento Ambiental/instrumentação , Material Particulado/análise , Análise Espectral/instrumentação , Aerossóis/efeitos adversos , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluentes Ocupacionais do Ar/análise , Monitoramento Ambiental/métodos , Humanos , Exposição por Inalação/análise , Tamanho da Partícula , Material Particulado/efeitos adversos
20.
Ann Occup Hyg ; 58(8): 995-1005, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25060240

RESUMO

Two prototype cyclones were the subjects of a comparative research campaign with a diesel particulate matter sampler (DPMS) that consists of a respirable cyclone combined with a downstream impactor. The DPMS is currently used in mining environments to separate dust from the diesel particulate matter and to avoid interferences in the analysis of integrated samples and direct-reading monitoring in occupational environments. The sampling characteristics of all three devices were compared using ammonium fluorescein, diesel, and coal dust aerosols. With solid spherical test aerosols at low particle loadings, the aerodynamic size-selection characteristics of all three devices were found to be similar, with 50% penetration efficiencies (d 50) close to the design value of 0.8 µm, as required by the US Mine Safety and Health Administration for monitoring occupational exposure to diesel particulate matter in US mining operations. The prototype cyclones were shown to have 'sharp cut' size-selection characteristics that equaled or exceeded the sharpness of the DPMS. The penetration of diesel aerosols was optimal for all three samplers, while the results of the tests with coal dust induced the exclusion of one of the prototypes from subsequent testing. The sampling characteristics of the remaining prototype sharp cut cyclone (SCC) and the DPMS were tested with different loading of coal dust. While the characteristics of the SCC remained constant, the deposited respirable coal dust particles altered the size-selection performance of the currently used sampler. This study demonstrates that the SCC performed better overall than the DPMS.


Assuntos
Aerossóis/análise , Movimentos do Ar , Poeira/análise , Monitoramento Ambiental/instrumentação , Mineração , Material Particulado/análise , Emissões de Veículos/análise , Poluentes Ocupacionais do Ar/análise , Carvão Mineral , Fluoresceínas , Humanos , Exposição por Inalação/análise , Exposição Ocupacional/prevenção & controle , Tamanho da Partícula , Respiração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA