Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(18)2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39338853

RESUMO

Atomic-scale imaging using scanning probe microscopy is a pivotal method for investigating the morphology and physico-chemical properties of nanostructured surfaces. Time resolution represents a significant limitation of this technique, as typical image acquisition times are on the order of several seconds or even a few minutes, while dynamic processes-such as surface restructuring or particle sintering, to be observed upon external stimuli such as changes in gas atmosphere or electrochemical potential-often occur within timescales shorter than a second. In this article, we present a fully redesigned field programmable gate array (FPGA)-based instrument that can be integrated into most commercially available standard scanning probe microscopes. This instrument not only significantly accelerates the acquisition of atomic-scale images by orders of magnitude but also enables the tracking of moving features such as adatoms, vacancies, or clusters across the surface ("atom tracking") due to the parallel execution of sophisticated control and acquisition algorithms and the fast exchange of data with an external processor. Each of these measurement modes requires a complex series of operations within the FPGA that are explained in detail.

2.
Sensors (Basel) ; 24(16)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39204929

RESUMO

Time-resolved spectroscopic and electron-ion coincidence techniques are essential to study dynamic processes in materials or chemical compounds. For this type of analysis, it is necessary to have detectors capable of providing, in addition to image-related information, the time of arrival for each individual detected particle ("x, y, time"). The electronics capable of handling such sensors must meet requirements achievable only with time-to-digital converters (TDC) with a resolution on the order of tens of picoseconds and the use of a field-programmable gate array (FPGA) to manage data acquisition and transmission. This study introduces the design and implementation of an innovative TDC based on two FPGAs working symbiotically with different tasks: the first (AMD/Xilinx Artix® 7) directly implements a TDC, aiming for a temporal precision of 12 picoseconds, while the second (Intel Cyclone® 10) manages the acquisition and connectivity with the external world. The TDC has been optimized to operate on eight channels (+ sync) simultaneously but is potentially extendable to a greater number of channels, making it particularly suitable for coincidence measurements where it is necessary to temporally correlate multiple pieces of information from various measurement systems.

3.
J Chem Phys ; 159(10)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37702355

RESUMO

In search of the cause behind the similarities often seen in the fragmentation of PANHs, vacuum ultraviolet (VUV) photodissociation of two pairs of isomers quinoline-isoquinoline and 2-naphthylamine-3-methyl-quinoline are studied using the velocity map imaging technique. The internal energy dependence of all primary fragmentation channels is obtained for all four target molecules. The decay dynamics of the four molecules is studied by comparing their various experimental signatures. The dominant channel for the first pair of isomers is found to be hydrogen cyanide (HCN) neutral loss, while the second pair of isomers lose HCNH neutral as its dominant channel. Despite this difference in their primary decay products and the differences in the structures of the four targets, various similarities in their experimental signatures are found, which could be explained by isomerization mechanisms to common structures. The fundamental role of these isomerization in controlling different dissociative channels is explored via a detailed analysis of the experimental photoelectron-photoion coincidences and the investigation of the theoretical potential energy surface. These results add to the notion of a universal PANH fragmentation mechanism and suggests the seven member isomerization as a key candidate for this universal mechanism. The balance between isomerization, dissociation, and other key mechanistic processes in the reaction pathways, such as hydrogen migrations, is also highlighted for the four molecules.

4.
Sensors (Basel) ; 22(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35746377

RESUMO

In hard X-ray applications that require high detection efficiency and short response times, such as synchrotron radiation-based Mössbauer absorption spectroscopy and time-resolved fluorescence or photon beam position monitoring, III-V-compound semiconductors, and dedicated alloys offer some advantages over the Si-based technologies traditionally used in solid-state photodetectors. Amongst them, gallium arsenide (GaAs) is one of the most valuable materials thanks to its unique characteristics. At the same time, implementing charge-multiplication mechanisms within the sensor may become of critical importance in cases where the photogenerated signal needs an intrinsic amplification before being acquired by the front-end electronics, such as in the case of a very weak photon flux or when single-photon detection is required. Some GaAs-based avalanche photodiodes (APDs) were grown by a molecular beam epitaxy to fulfill these needs; by means of band gap engineering, we realised devices with separate absorption and multiplication region(s) (SAM), the latter featuring a so-called staircase structure to reduce the multiplication noise. This work reports on the experimental characterisations of gain, noise, and charge collection efficiencies of three series of GaAs APDs featuring different thicknesses of the absorption regions. These devices have been developed to investigate the role of such thicknesses and the presence of traps or defects at the metal-semiconductor interfaces responsible for charge loss, in order to lay the groundwork for the future development of very thick GaAs devices (thicker than 100 µm) for hard X-rays. Several measurements were carried out on such devices with both lasers and synchrotron light sources, inducing photon absorption with X-ray microbeams at variable and controlled depths. In this way, we verified both the role of the thickness of the absorption region in the collection efficiency and the possibility of using the APDs without reaching the punch-through voltage, thus preventing the noise induced by charge multiplication in the absorption region. These devices, with thicknesses suitable for soft X-ray detection, have also shown good characteristics in terms of internal amplification and reduction of multiplication noise, in line with numerical simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA