Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37766036

RESUMO

Detecting volatile organic compounds is a fundamental step in water quality analysis. Methylisoborneol (MIB) provides a lousy odor to water, whereas geosmin (GEO) is responsible for its sour taste. A widely-used technique for their detection is gas-phase chromatography. On the other hand, an electronic nose from organic thin-film transistors is a cheaper and faster alternative. Poly(2,5-bis(3-tetradecyl-thiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT-C14) features semiconducting properties suitable for organic electronics. However, in order to expose the active layer in a bottom-gate transistor structure with photolithographically patterned electrodes, a cross-linked dielectric such as poly(4-vinyl phenol) (PVP) is necessary. In this work, the cross-linking was demonstrated using FTIR and Raman spectroscopies, as well as high-k capacitors with a dielectric constant of 5.3. The presence of enhanced crystallinity with terrace formation in the semiconducting film was confirmed with UV-visible spectrophotometry, atomic force microscopy, and X-ray diffraction. Finally, for the first time, a PBTTT-C14 transistor on cross-linked PVP was shown to respond to isoborneol with a sensitivity of up to 6% change in mobility per ppm. Due to its similarity to MIB, a system comprising these sensors must be investigated in the future as a tool for sanitation companies in real-time water quality monitoring.

2.
Biosensors (Basel) ; 13(1)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36671977

RESUMO

Electrochemical biosensing devices are known for their simple operational procedures, low fabrication cost, and suitable real-time detection. Despite these advantages, they have shown some limitations in the immobilization of biochemicals. The development of alternative materials to overcome these drawbacks has attracted significant attention. Nanocellulose-based materials have revealed valuable features due to their capacity for the immobilization of biomolecules, structural flexibility, and biocompatibility. Bacterial nanocellulose (BNC) has gained a promising role as an alternative to antifouling surfaces. To widen its applicability as a biosensing device, BNC may form part of the supports for the immobilization of specific materials. The possibilities of modification methods and in situ and ex situ functionalization enable new BNC properties. With the new insights into nanoscale studies, we expect that many biosensors currently based on plastic, glass, or paper platforms will rely on renewable platforms, especially BNC ones. Moreover, substrates based on BNC seem to have paved the way for the development of sensing platforms with minimally invasive approaches, such as wearable devices, due to their mechanical flexibility and biocompatibility.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Celulose/química , Bactérias , Técnicas Biossensoriais/métodos , Plásticos
3.
Materials (Basel) ; 14(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375044

RESUMO

Organic thin-film transistors (OTFTs) are miniaturized devices based upon the electronic responses of organic semiconductors. In comparison to their conventional inorganic counterparts, organic semiconductors are cheaper, can undergo reversible doping processes and may have electronic properties chiefly modulated by molecular engineering approaches. More recently, OTFTs have been designed as gas sensor devices, displaying remarkable performance for the detection of important target analytes, such as ammonia, nitrogen dioxide, hydrogen sulfide and volatile organic compounds (VOCs). The present manuscript provides a comprehensive review on the working principle of OTFTs for gas sensing, with concise descriptions of devices' architectures and parameter extraction based upon a constant charge carrier mobility model. Then, it moves on with methods of device fabrication and physicochemical descriptions of the main organic semiconductors recently applied to gas sensors (i.e., since 2015 but emphasizing even more recent results). Finally, it describes the achievements of OTFTs in the detection of important gas pollutants alongside an outlook toward the future of this exciting technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA