Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Cell ; 186(1): 32-46.e19, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608656

RESUMO

We investigate a 2,000-year genetic transect through Scandinavia spanning the Iron Age to the present, based on 48 new and 249 published ancient genomes and genotypes from 16,638 modern individuals. We find regional variation in the timing and magnitude of gene flow from three sources: the eastern Baltic, the British-Irish Isles, and southern Europe. British-Irish ancestry was widespread in Scandinavia from the Viking period, whereas eastern Baltic ancestry is more localized to Gotland and central Sweden. In some regions, a drop in current levels of external ancestry suggests that ancient immigrants contributed proportionately less to the modern Scandinavian gene pool than indicated by the ancestry of genomes from the Viking and Medieval periods. Finally, we show that a north-south genetic cline that characterizes modern Scandinavians is mainly due to the differential levels of Uralic ancestry and that this cline existed in the Viking Age and possibly earlier.


Assuntos
Genoma Humano , Humanos , Europa (Continente) , Variação Genética , Países Escandinavos e Nórdicos , Reino Unido , População Branca/genética , População Branca/história , Migração Humana
2.
Proc Natl Acad Sci U S A ; 119(25): e2119281119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35696575

RESUMO

Haplotype-based analyses have recently been leveraged to interrogate the fine-scale structure in specific geographic regions, notably in Europe, although an equivalent haplotype-based understanding across the whole of Europe with these tools is lacking. Furthermore, study of identity-by-descent (IBD) sharing in a large sample of haplotypes across Europe would allow a direct comparison between different demographic histories of different regions. The UK Biobank (UKBB) is a population-scale dataset of genotype and phenotype data collected from the United Kingdom, with established sampling of worldwide ancestries. The exact content of these non-UK ancestries is largely uncharacterized, where study could highlight valuable intracontinental ancestry references with deep phenotyping within the UKBB. In this context, we sought to investigate the sample of European ancestry captured in the UKBB. We studied the haplotypes of 5,500 UKBB individuals with a European birthplace; investigated the population structure and demographic history in Europe, showing in parallel the variety of footprints of demographic history in different genetic regions around Europe; and expand knowledge of the genetic landscape of the east and southeast of Europe. Providing an updated map of European genetics, we leverage IBD-segment sharing to explore the extent of population isolation and size across the continent. In addition to building and expanding upon previous knowledge in Europe, our results show the UKBB as a source of diverse ancestries beyond Britain. These worldwide ancestries sampled in the UKBB may complement and inform researchers interested in specific communities or regions not limited to Britain.


Assuntos
Haplótipos , População , Bases de Dados Genéticas , Conjuntos de Dados como Assunto , Demografia , Europa (Continente) , Variação Genética , População/genética
3.
Epilepsia ; 65(5): 1451-1461, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38491957

RESUMO

OBJECTIVE: The contribution of somatic variants to epilepsy has recently been demonstrated, particularly in the etiology of malformations of cortical development. The aim of this study was to determine the diagnostic yield of somatic variants in genes that have been previously associated with a somatic or germline epilepsy model, ascertained from resected brain tissue from patients with multidrug-resistant focal epilepsy. METHODS: Forty-two patients were recruited across three categories: (1) malformations of cortical development, (2) mesial temporal lobe epilepsy with hippocampal sclerosis, and (3) nonlesional focal epilepsy. Participants were subdivided based on histopathology of the resected brain. Paired blood- and brain-derived DNA samples were sequenced using high-coverage targeted next generation sequencing to high depth (585× and 1360×, respectively). Variants were identified using Genome Analysis ToolKit (GATK4) MuTect-2 and confirmed using high-coverage Amplicon-EZ sequencing. RESULTS: Sequence data on 41 patients passed quality control. Four somatic variants were validated following amplicon sequencing: within CBL, ALG13, MTOR, and FLNA. The diagnostic yield across 41 patients was 10%, 9% in mesial temporal lobe epilepsy with hippocampal sclerosis and 20% in malformations of cortical development. SIGNIFICANCE: This study provides novel insights into the etiology of mesial temporal lobe epilepsy with hippocampal sclerosis, highlighting a potential pathogenic role of somatic variants in CBL and ALG13. We also report candidate diagnostic somatic variants in FLNA in focal cortical dysplasia, while providing further insight into the importance of MTOR and related genes in focal cortical dysplasia. This work demonstrates the potential molecular diagnostic value of variants in both germline and somatic epilepsy genes.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia do Lobo Temporal , Esclerose Hipocampal , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/etiologia , Epilepsia Resistente a Medicamentos/patologia , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/patologia , Filaminas/genética , Variação Genética , Esclerose Hipocampal/genética , Esclerose Hipocampal/patologia , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/complicações , Malformações do Desenvolvimento Cortical/patologia
4.
Ann Neurol ; 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36534060

RESUMO

OBJECTIVE: Genetic factors have long been debated as a cause of failure of surgery for mesial temporal lobe epilepsy (MTLE). We investigated whether rare genetic variation influences seizure outcomes of MTLE surgery. METHODS: We performed an international, multicenter, whole exome sequencing study of patients who underwent surgery for drug-resistant, unilateral MTLE with normal magnetic resonance imaging (MRI) or MRI evidence of hippocampal sclerosis and ≥2-year postsurgical follow-up. Patients with either sustained seizure freedom (favorable outcome) or ongoing uncontrolled seizures since surgery (unfavorable outcome) were included. Exomes of controls without epilepsy were also included. Gene set burden analyses were carried out to identify genes with significant enrichment of rare deleterious variants in patients compared to controls. RESULTS: Nine centers from 3 continents contributed 206 patients operated for drug-resistant unilateral MTLE, of whom 196 (149 with favorable outcome and 47 with unfavorable outcome) were included after stringent quality control. Compared to 8,718 controls, MTLE cases carried a higher burden of ultrarare missense variants in constrained genes that are intolerant to loss-of-function (LoF) variants (odds ratio [OR] = 2.6, 95% confidence interval [CI] = 1.9-3.5, p = 1.3E-09) and in genes encoding voltage-gated cation channels (OR = 2.4, 95% CI = 1.4-3.8, p = 2.7E-04). Proportions of subjects with such variants were comparable between patients with favorable outcome and those with unfavorable outcome, with no significant between-group differences. INTERPRETATION: Rare variation contributes to the genetic architecture of MTLE, but does not appear to have a major role in failure of MTLE surgery. These findings can be incorporated into presurgical decision-making and counseling. ANN NEUROL 2022.

5.
Epilepsia ; 64 Suppl 1: S52-S57, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36751956

RESUMO

OBJECTIVE: Familial adult myoclonic epilepsy (FAME) is an under-recognized disorder characterized by cortical myoclonus, generalized tonic-clonic seizures, and additional clinical symptoms, which vary depending on the FAME subtype. FAME is caused by pentanucleotide repeat expansions of intronic TTTCA/TTTTA in different genes. FAME should be distinguished from a range of differential diagnoses. METHODS: The differential diagnoses and frequent presentations leading to misdiagnosis of FAME were investigated from the available literature and reported based on an expert opinion survey. RESULTS: The phenotypic features of FAME, including generalized tonic-clonic and myoclonic seizures, are also seen in other epilepsy syndromes, such as juvenile myoclonic epilepsy, with a resultant risk of misdiagnosis and lack of identification of the underlying cause. Cortical myoclonus may mimic essential tremor or drug-induced tremor. In younger individuals, the differential diagnosis includes progressive myoclonus epilepsies (PMEs), such as Unverricht-Lundborg disease, whereas, in adulthood, late-onset variants of PMEs, such as sialidoses, myoclonus epilepsy, and ataxia due to potassium channel pathogenic variants should be considered. PMEs may also be suggested by cognitive impairment, cerebellar signs, or psychiatric disorders. Electroencephalography (EEG) may show similarities to other idiopathic generalized epilepsies or PMEs, with generalized spike-wave activity. Signs of cortical hyperexcitability may be seen, such as an increased amplitude of somatosensory evoked potentials or enhanced cortical reflex to sensory stimuli, together with the neurophysiological pattern of the movement disorder. SIGNIFICANCE: Recognition of FAME will inform prognostic and genetic counseling and diagnosis of the insidious progression, which may occur in older individuals who show mild cognitive deterioration. Distinguishing FAME from other disorders in individuals or families with this constellation of symptoms is essential to allow the identification of underlying etiology.


Assuntos
Epilepsias Mioclônicas , Epilepsia Generalizada , Epilepsias Mioclônicas Progressivas , Epilepsia Mioclônica Juvenil , Mioclonia , Humanos , Adulto , Idoso , Diagnóstico Diferencial , Mioclonia/diagnóstico , Epilepsias Mioclônicas/diagnóstico , Epilepsias Mioclônicas/genética , Epilepsia Generalizada/diagnóstico , Eletroencefalografia , Epilepsias Mioclônicas Progressivas/diagnóstico , Epilepsias Mioclônicas Progressivas/genética , Epilepsia Mioclônica Juvenil/diagnóstico , Epilepsia Mioclônica Juvenil/genética , Convulsões/diagnóstico
6.
Eur J Neurol ; 30(10): 3341-3346, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37422919

RESUMO

BACKGROUND: Pathogenic variants in the GAP activity towards RAGs 1 (GATOR1) complex genes (DEPDC5, NPRL2, NPRL3) cause focal epilepsy through hyperactivation of the mechanistic target of rapamycin pathway. We report our experience using everolimus in patients with refractory GATOR1-related epilepsy. METHODS: We performed an open-label observational study of everolimus for drug-resistant epilepsy caused by variants in DEPDC5, NPRL2 and NPRL3. Everolimus was titrated to a target serum concentration (5-15 ng/mL). The primary outcome measure was change in mean monthly seizure frequency compared with baseline. RESULTS: Five patients were treated with everolimus. All had highly active (median baseline seizure frequency, 18/month) and refractory focal epilepsy (failed 5-16 prior anti-seizure medications). Four had DEPDC5 variants (three loss-of-function, one missense) and one had a NPRL3 splice-site variant. All patients with DEPDC5 loss-of-function variants had significantly reduced seizures (74.3%-86.1%), although one stopped everolimus after 12 months due to psychiatric symptoms. Everolimus was less effective in the patient with a DEPDC5 missense variant (43.9% seizure frequency reduction). The patient with NPRL3-related epilepsy had seizure worsening. The most common adverse event was stomatitis. CONCLUSIONS: Our study provides the first human data on the potential benefit of everolimus precision therapy for epilepsy caused by DEPDC5 loss-of-function variants. Further studies are needed to support our findings.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsias Parciais , Epilepsia , Humanos , Everolimo/efeitos adversos , Epilepsias Parciais/tratamento farmacológico , Epilepsias Parciais/genética , Proteínas Ativadoras de GTPase/genética , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Epilepsia Resistente a Medicamentos/genética
7.
Brain ; 145(4): 1285-1298, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35333312

RESUMO

Temporal lobe epilepsy, a common drug-resistant epilepsy in adults, is primarily a limbic network disorder associated with predominant unilateral hippocampal pathology. Structural MRI has provided an in vivo window into whole-brain grey matter structural alterations in temporal lobe epilepsy relative to controls, by either mapping (i) atypical inter-hemispheric asymmetry; or (ii) regional atrophy. However, similarities and differences of both atypical asymmetry and regional atrophy measures have not been systematically investigated. Here, we addressed this gap using the multisite ENIGMA-Epilepsy dataset comprising MRI brain morphological measures in 732 temporal lobe epilepsy patients and 1418 healthy controls. We compared spatial distributions of grey matter asymmetry and atrophy in temporal lobe epilepsy, contextualized their topographies relative to spatial gradients in cortical microstructure and functional connectivity calculated using 207 healthy controls obtained from Human Connectome Project and an independent dataset containing 23 temporal lobe epilepsy patients and 53 healthy controls and examined clinical associations using machine learning. We identified a marked divergence in the spatial distribution of atypical inter-hemispheric asymmetry and regional atrophy mapping. The former revealed a temporo-limbic disease signature while the latter showed diffuse and bilateral patterns. Our findings were robust across individual sites and patients. Cortical atrophy was significantly correlated with disease duration and age at seizure onset, while degrees of asymmetry did not show a significant relationship to these clinical variables. Our findings highlight that the mapping of atypical inter-hemispheric asymmetry and regional atrophy tap into two complementary aspects of temporal lobe epilepsy-related pathology, with the former revealing primary substrates in ipsilateral limbic circuits and the latter capturing bilateral disease effects. These findings refine our notion of the neuropathology of temporal lobe epilepsy and may inform future discovery and validation of complementary MRI biomarkers in temporal lobe epilepsy.


Assuntos
Conectoma , Epilepsia do Lobo Temporal , Adulto , Atrofia/patologia , Epilepsia do Lobo Temporal/patologia , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética
8.
Neuropathol Appl Neurobiol ; 48(1): e12758, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34388852

RESUMO

AIMS: The causes of distinct patterns of reduced cortical thickness in the common human epilepsies, detectable on neuroimaging and with important clinical consequences, are unknown. We investigated the underlying mechanisms of cortical thinning using a systems-level analysis. METHODS: Imaging-based cortical structural maps from a large-scale epilepsy neuroimaging study were overlaid with highly spatially resolved human brain gene expression data from the Allen Human Brain Atlas. Cell-type deconvolution, differential expression analysis and cell-type enrichment analyses were used to identify differences in cell-type distribution. These differences were followed up in post-mortem brain tissue from humans with epilepsy using Iba1 immunolabelling. Furthermore, to investigate a causal effect in cortical thinning, cell-type-specific depletion was used in a murine model of acquired epilepsy. RESULTS: We identified elevated fractions of microglia and endothelial cells in regions of reduced cortical thickness. Differentially expressed genes showed enrichment for microglial markers and, in particular, activated microglial states. Analysis of post-mortem brain tissue from humans with epilepsy confirmed excess activated microglia. In the murine model, transient depletion of activated microglia during the early phase of the disease development prevented cortical thinning and neuronal cell loss in the temporal cortex. Although the development of chronic seizures was unaffected, the epileptic mice with early depletion of activated microglia did not develop deficits in a non-spatial memory test seen in epileptic mice not depleted of microglia. CONCLUSIONS: These convergent data strongly implicate activated microglia in cortical thinning, representing a new dimension for concern and disease modification in the epilepsies, potentially distinct from seizure control.


Assuntos
Epilepsia , Microglia , Animais , Encéfalo , Células Endoteliais , Epilepsia/metabolismo , Camundongos , Microglia/metabolismo , Convulsões
9.
Ann Neurol ; 90(2): 193-202, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34184781

RESUMO

OBJECTIVE: This study was undertaken to identify susceptibility loci for cluster headache and obtain insights into relevant disease pathways. METHODS: We carried out a genome-wide association study, where 852 UK and 591 Swedish cluster headache cases were compared with 5,614 and 1,134 controls, respectively. Following quality control and imputation, single variant association testing was conducted using a logistic mixed model for each cohort. The 2 cohorts were subsequently combined in a merged analysis. Downstream analyses, such as gene-set enrichment, functional variant annotation, prediction and pathway analyses, were performed. RESULTS: Initial independent analysis identified 2 replicable cluster headache susceptibility loci on chromosome 2. A merged analysis identified an additional locus on chromosome 1 and confirmed a locus significant in the UK analysis on chromosome 6, which overlaps with a previously known migraine locus. The lead single nucleotide polymorphisms were rs113658130 (p = 1.92 × 10-17 , odds ratio [OR] = 1.51, 95% confidence interval [CI] = 1.37-1.66) and rs4519530 (p = 6.98 × 10-17 , OR = 1.47, 95% CI = 1.34-1.61) on chromosome 2, rs12121134 on chromosome 1 (p = 1.66 × 10-8 , OR = 1.36, 95% CI = 1.22-1.52), and rs11153082 (p = 1.85 × 10-8 , OR = 1.30, 95% CI = 1.19-1.42) on chromosome 6. Downstream analyses implicated immunological processes in the pathogenesis of cluster headache. INTERPRETATION: We identified and replicated several genome-wide significant associations supporting a genetic predisposition in cluster headache in a genome-wide association study involving 1,443 cases. Replication in larger independent cohorts combined with comprehensive phenotyping, in relation to, for example, treatment response and cluster headache subtypes, could provide unprecedented insights into genotype-phenotype correlations and the pathophysiological pathways underlying cluster headache. ANN NEUROL 2021;90:193-202.


Assuntos
Cefaleia Histamínica/epidemiologia , Cefaleia Histamínica/genética , Loci Gênicos/genética , Predisposição Genética para Doença/epidemiologia , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Estudos de Casos e Controles , Cefaleia Histamínica/diagnóstico , Estudos de Coortes , Feminino , Humanos , Masculino , Suécia/epidemiologia , Reino Unido/epidemiologia
10.
Am J Med Genet A ; 188(1): 138-146, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34569149

RESUMO

Large international consortia examining the genomic architecture of the epilepsies focus on large diagnostic subgroupings such as "all focal epilepsy" and "all genetic generalized epilepsy". In addition, phenotypic data are generally entered into these large discovery databases in a unidirectional manner at one point in time only. However, there are many smaller phenotypic subgroupings in epilepsy, many of which may have unique genomic risk factors. Such a subgrouping or "microphenotype" may be defined as an uncommon or rare phenotype that is well recognized by epileptologists and the epilepsy community, and which may or may not be formally recognized within the International League Against Epilepsy classification system. Here we examine the genetic structure of a number of such microphenotypes and report in particular on two interesting clinical phenotypes, Jeavons syndrome and pediatric status epilepticus. Although no single gene reached exome-wide statistical significance to be associated with any of the diagnostic categories, we observe enrichment of rare damaging variants in established epilepsy genes among Landau-Kleffner patients (GRIN2A) and pediatric status epilepticus patients (MECP2, SCN1A, SCN2A, SCN8A).


Assuntos
Epilepsia Generalizada , Epilepsia , Criança , Epilepsia/diagnóstico , Epilepsia/genética , Epilepsia Generalizada/diagnóstico , Epilepsia Generalizada/genética , Exoma , Genômica , Humanos , Fenótipo
11.
Epilepsia ; 63(6): 1563-1570, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35298028

RESUMO

OBJECTIVE: Levetiracetam (LEV) is an effective antiseizure medicine, but 10%-20% of people treated with LEV report psychiatric side-effects, and up to 1% may have psychotic episodes. Pharmacogenomic predictors of these adverse drug reactions (ADRs) have yet to be identified. We sought to determine the contribution of both common and rare genetic variation to psychiatric and behavioral ADRs associated with LEV. METHODS: This case-control study compared cases of LEV-associated behavioral disorder (n = 149) or psychotic reaction (n = 37) to LEV-exposed people with no history of psychiatric ADRs (n = 920). All samples were of European ancestry. We performed genome-wide association study (GWAS) analysis comparing those with LEV ADRs to controls. We estimated the polygenic risk scores (PRS) for schizophrenia and compared cases with LEV-associated psychotic reaction to controls. Rare variant burden analysis was performed using exome sequence data of cases with psychotic reactions (n = 18) and controls (n = 122). RESULTS: Univariate GWAS found no significant associations with either LEV-associated behavioural disorder or LEV-psychotic reaction. PRS analysis showed that cases of LEV-associated psychotic reaction had an increased PRS for schizophrenia relative to contr ols (p = .0097, estimate = .4886). The rare-variant analysis found no evidence of an increased burden of rare genetic variants in people who had experienced LEV-associated psychotic reaction relative to controls. SIGNIFICANCE: The polygenic burden for schizophrenia is a risk factor for LEV-associated psychotic reaction. To assess the clinical utility of PRS as a predictor, it should be tested in an independent and ideally prospective cohort. Larger sample sizes are required for the identification of significant univariate common genetic signals or rare genetic signals associated with psychiatric LEV ADRs.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Estudo de Associação Genômica Ampla , Anticonvulsivantes/efeitos adversos , Estudos de Casos e Controles , Predisposição Genética para Doença/genética , Humanos , Levetiracetam/efeitos adversos , Farmacogenética , Estudos Prospectivos
12.
Proc Natl Acad Sci U S A ; 116(38): 19064-19070, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31481615

RESUMO

Britain and Ireland are known to show population genetic structure; however, large swathes of Scotland, in particular, have yet to be described. Delineating the structure and ancestry of these populations will allow variant discovery efforts to focus efficiently on areas not represented in existing cohorts. Thus, we assembled genotype data for 2,554 individuals from across the entire archipelago with geographically restricted ancestry, and performed population structure analyses and comparisons to ancient DNA. Extensive geographic structuring is revealed, from broad scales such as a NE to SW divide in mainland Scotland, through to the finest scale observed to date: across 3 km in the Northern Isles. Many genetic boundaries are consistent with Dark Age kingdoms of Gaels, Picts, Britons, and Norse. Populations in the Hebrides, the Highlands, Argyll, Donegal, and the Isle of Man show characteristics of isolation. We document a pole of Norwegian ancestry in the north of the archipelago (reaching 23 to 28% in Shetland) which complements previously described poles of Germanic ancestry in the east, and "Celtic" to the west. This modern genetic structure suggests a northwestern British or Irish source population for the ancient Gaels that contributed to the founding of Iceland. As rarer variants, often with larger effect sizes, become the focus of complex trait genetics, more diverse rural cohorts may be required to optimize discoveries in British and Irish populations and their considerable global diaspora.


Assuntos
DNA Antigo/análise , Etnicidade/genética , Variação Genética , Genética Populacional , Genoma Humano , Humanos , Irlanda , Ilhas , Escócia
13.
Brain ; 143(8): 2454-2473, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32814957

RESUMO

The epilepsies are commonly accompanied by widespread abnormalities in cerebral white matter. ENIGMA-Epilepsy is a large quantitative brain imaging consortium, aggregating data to investigate patterns of neuroimaging abnormalities in common epilepsy syndromes, including temporal lobe epilepsy, extratemporal epilepsy, and genetic generalized epilepsy. Our goal was to rank the most robust white matter microstructural differences across and within syndromes in a multicentre sample of adult epilepsy patients. Diffusion-weighted MRI data were analysed from 1069 healthy controls and 1249 patients: temporal lobe epilepsy with hippocampal sclerosis (n = 599), temporal lobe epilepsy with normal MRI (n = 275), genetic generalized epilepsy (n = 182) and non-lesional extratemporal epilepsy (n = 193). A harmonized protocol using tract-based spatial statistics was used to derive skeletonized maps of fractional anisotropy and mean diffusivity for each participant, and fibre tracts were segmented using a diffusion MRI atlas. Data were harmonized to correct for scanner-specific variations in diffusion measures using a batch-effect correction tool (ComBat). Analyses of covariance, adjusting for age and sex, examined differences between each epilepsy syndrome and controls for each white matter tract (Bonferroni corrected at P < 0.001). Across 'all epilepsies' lower fractional anisotropy was observed in most fibre tracts with small to medium effect sizes, especially in the corpus callosum, cingulum and external capsule. There were also less robust increases in mean diffusivity. Syndrome-specific fractional anisotropy and mean diffusivity differences were most pronounced in patients with hippocampal sclerosis in the ipsilateral parahippocampal cingulum and external capsule, with smaller effects across most other tracts. Individuals with temporal lobe epilepsy and normal MRI showed a similar pattern of greater ipsilateral than contralateral abnormalities, but less marked than those in patients with hippocampal sclerosis. Patients with generalized and extratemporal epilepsies had pronounced reductions in fractional anisotropy in the corpus callosum, corona radiata and external capsule, and increased mean diffusivity of the anterior corona radiata. Earlier age of seizure onset and longer disease duration were associated with a greater extent of diffusion abnormalities in patients with hippocampal sclerosis. We demonstrate microstructural abnormalities across major association, commissural, and projection fibres in a large multicentre study of epilepsy. Overall, patients with epilepsy showed white matter abnormalities in the corpus callosum, cingulum and external capsule, with differing severity across epilepsy syndromes. These data further define the spectrum of white matter abnormalities in common epilepsy syndromes, yielding more detailed insights into pathological substrates that may explain cognitive and psychiatric co-morbidities and be used to guide biomarker studies of treatment outcomes and/or genetic research.


Assuntos
Encéfalo/patologia , Síndromes Epilépticas/patologia , Substância Branca/patologia , Adulto , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade
14.
Hum Brain Mapp ; 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32468614

RESUMO

Epilepsy is a common and serious neurological disorder, with many different constituent conditions characterized by their electro clinical, imaging, and genetic features. MRI has been fundamental in advancing our understanding of brain processes in the epilepsies. Smaller-scale studies have identified many interesting imaging phenomena, with implications both for understanding pathophysiology and improving clinical care. Through the infrastructure and concepts now well-established by the ENIGMA Consortium, ENIGMA-Epilepsy was established to strengthen epilepsy neuroscience by greatly increasing sample sizes, leveraging ideas and methods established in other ENIGMA projects, and generating a body of collaborating scientists and clinicians to drive forward robust research. Here we review published, current, and future projects, that include structural MRI, diffusion tensor imaging (DTI), and resting state functional MRI (rsfMRI), and that employ advanced methods including structural covariance, and event-based modeling analysis. We explore age of onset- and duration-related features, as well as phenomena-specific work focusing on particular epilepsy syndromes or phenotypes, multimodal analyses focused on understanding the biology of disease progression, and deep learning approaches. We encourage groups who may be interested in participating to make contact to further grow and develop ENIGMA-Epilepsy.

15.
Am J Nephrol ; 51(1): 43-53, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31822006

RESUMO

BACKGROUND: Renal biopsy is the mainstay of renal pathological diagnosis. Despite sophisticated diagnostic techniques, it is not always possible to make a precise pathological diagnosis. Our aim was to identify a genetic cause of disease in patients who had undergone renal biopsy and determine if genetic testing altered diagnosis or treatment. METHODS: Patients with suspected familial kidney disease underwent a variety of next-generation sequencing (NGS) strategies. The subset of these patients who had also undergone native kidney biopsy was identified. Histological specimens were reviewed by a consultant pathologist, and genetic and pathological diagnoses were compared. RESULTS: Seventy-five patients in 47 families underwent genetic sequencing and renal biopsy. Patients were grouped into 5 diagnostic categories based on pathological diagnosis: tubulointerstitial kidney disease (TIKD; n = 18); glomerulonephritis (GN; n = 15); focal segmental glomerulosclerosis and Alport Syndrome (n = 11); thrombotic microangiopathy (TMA; n = 17); and nonspecific pathological changes (n = 14). Thirty-nine patients (52%) in 21 families (45%) received a genetic diagnosis; 13 cases (72%) with TIKD, 4 (27%) with GN, 6 (55%) with focal segmental glomerulosclerosis/Alport syndrome, and 10 (59%) with TMA and 6 cases (43%) with nonspecific features. Genetic testing resulted in changes in understanding of disease mechanism in 21 individuals (54%) in 12 families (57%). Treatment would have been altered in at least 26% of cases (10/39). CONCLUSIONS: An accurate genetic diagnosis can result in changes in clinical diagnosis, understanding of pathological mechanism, and treatment. NGS should be considered as a complementary diagnostic technique to kidney biopsy in the evaluation of patients with kidney disease.


Assuntos
Testes Genéticos , Nefropatias/genética , Nefropatias/patologia , Rim/patologia , Adolescente , Adulto , Idoso , Biópsia , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
16.
Epilepsia ; 61(4): 657-666, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32141622

RESUMO

OBJECTIVE: Drug resistance is a major concern in the treatment of individuals with epilepsy. No genetic markers for resistance to individual antiseizure medication (ASM) have yet been identified. We aimed to identify the role of rare genetic variants in drug resistance for three common ASMs: levetiracetam (LEV), lamotrigine (LTG), and valproic acid (VPA). METHODS: A cohort of 1622 individuals of European descent with epilepsy was deeply phenotyped and underwent whole exome sequencing (WES), comprising 575 taking LEV, 826 LTG, and 782 VPA. We performed gene- and gene set-based collapsing analyses comparing responders and nonresponders to the three drugs to determine the burden of different categories of rare genetic variants. RESULTS: We observed a marginally significant enrichment of rare missense, truncating, and splice region variants in individuals who were resistant to VPA compared to VPA responders for genes involved in VPA pharmacokinetics. We also found a borderline significant enrichment of truncating and splice region variants in the synaptic vesicle glycoprotein (SV2) gene family in nonresponders compared to responders to LEV. We did not see any significant enrichment using a gene-based approach. SIGNIFICANCE: In our pharmacogenetic study, we identified a slightly increased burden of damaging variants in gene groups related to drug kinetics or targeting in individuals presenting with drug resistance to VPA or LEV. Such variants could thus determine a genetic contribution to drug resistance.


Assuntos
Anticonvulsivantes/uso terapêutico , Resistência a Medicamentos/genética , Epilepsia/tratamento farmacológico , Epilepsia/genética , Variantes Farmacogenômicos/genética , Estudos de Casos e Controles , Feminino , Genótipo , Humanos , Lamotrigina/uso terapêutico , Levetiracetam/uso terapêutico , Masculino , Ácido Valproico/uso terapêutico
17.
Clin Transplant ; 34(8): e13904, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32400091

RESUMO

Polygenic risk scores (PRSs) calculated from genome-wide association studies (GWASs) of non-melanoma skin cancer (NMSC) in a general, non-transplant setting have recently been shown to predict risk of and time to post-renal transplant skin cancer. In this study, we set out to test these findings in a cohort of heart, lung, and liver transplant patients to see whether these scores could be applied across different organ transplant types. Using the PRS from Stapleton et al (2018), PRS was calculated for each sample across a European ancestry heart, lung, and liver transplant cohorts (n = 523) and tested as predictor of time to NMSC post-transplant. The top PRS, squamous cell carcinoma (SCC) pT1 x 10-5 , (n SNPs = 1953), SCC pT1 x 10-6 , and SCC pT1 x 10-6 (n SNPs = 1061) were significantly predictive in the time to NMSC, SCC, and basal cell carcinoma (BCC) analysis across organ (P = .006, .02, and .02, respectively). We observed here a similar direction of effect and effect size [NMSC HR = 1.31(1.08-1.59)] to that in the original discovery study with increased polygenic burden leading to a faster time to developing NMSC. In summary, we found that PRS of NMSC calculated from GWAS of NMSC in non-transplant populations independently replicated in this cohort of heart, lung, and liver transplant.


Assuntos
Carcinoma Basocelular , Carcinoma de Células Escamosas , Neoplasias Cutâneas , Carcinoma Basocelular/etiologia , Carcinoma Basocelular/genética , Carcinoma de Células Escamosas/genética , Estudo de Associação Genômica Ampla , Humanos , Incidência , Fatores de Risco , Neoplasias Cutâneas/genética
18.
Clin Transplant ; 34(2): e13783, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31958169

RESUMO

INTRODUCTION: Autosomal dominant tubulointerstitial kidney disease (ADTKD) is a rare genetic cause of chronic kidney disease (CKD) and end-stage renal disease (ESRD). We aimed to compare renal transplant outcomes in people with ESRD due to ADTKD to those with other causes of renal failure. METHODS: Patients with clinical characteristics consistent with ADTKD by the criteria outlined in the 2015 KDIGO consensus were included. We compared ADTKD transplant outcomes with those of 4633 non-ADTKD renal transplant recipients. RESULTS: We included 31 patients who met diagnostic criteria for ADTKD in this analysis, 23 of whom had an identified mutation (28 were categorized as definite-ADTKD and 3 as suspected ADTKD). Five patients received a second transplant during follow-up. In total, 36 grafts were included. We did not identify significant differences between groups in terms of graft or patient survival after transplantation. Twenty-five transplant biopsies were performed during follow-up, and none of these showed signs of recurrent ADTKD post-transplant. CONCLUSION: In patients with ESRD due to ADTKD, we demonstrate that transplant outcomes are comparable with the general transplant population. There is no evidence that ADTKD can recur after transplantation.


Assuntos
Falência Renal Crônica , Transplante de Rim , Rim Policístico Autossômico Dominante , Sobrevivência de Enxerto , Humanos , Falência Renal Crônica/cirurgia , Mutação , Uromodulina/genética
19.
Brain ; 142(11): 3473-3481, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31608925

RESUMO

Rare genetic variants can cause epilepsy, and genetic testing has been widely adopted for severe, paediatric-onset epilepsies. The phenotypic consequences of common genetic risk burden for epilepsies and their potential future clinical applications have not yet been determined. Using polygenic risk scores (PRS) from a European-ancestry genome-wide association study in generalized and focal epilepsy, we quantified common genetic burden in patients with generalized epilepsy (GE-PRS) or focal epilepsy (FE-PRS) from two independent non-Finnish European cohorts (Epi25 Consortium, n = 5705; Cleveland Clinic Epilepsy Center, n = 620; both compared to 20 435 controls). One Finnish-ancestry population isolate (Finnish-ancestry Epi25, n = 449; compared to 1559 controls), two European-ancestry biobanks (UK Biobank, n = 383 656; Vanderbilt biorepository, n = 49 494), and one Japanese-ancestry biobank (BioBank Japan, n = 168 680) were used for additional replications. Across 8386 patients with epilepsy and 622 212 population controls, we found and replicated significantly higher GE-PRS in patients with generalized epilepsy of European-ancestry compared to patients with focal epilepsy (Epi25: P = 1.64×10-15; Cleveland: P = 2.85×10-4; Finnish-ancestry Epi25: P = 1.80×10-4) or population controls (Epi25: P = 2.35×10-70; Cleveland: P = 1.43×10-7; Finnish-ancestry Epi25: P = 3.11×10-4; UK Biobank and Vanderbilt biorepository meta-analysis: P = 7.99×10-4). FE-PRS were significantly higher in patients with focal epilepsy compared to controls in the non-Finnish, non-biobank cohorts (Epi25: P = 5.74×10-19; Cleveland: P = 1.69×10-6). European ancestry-derived PRS did not predict generalized epilepsy or focal epilepsy in Japanese-ancestry individuals. Finally, we observed a significant 4.6-fold and a 4.5-fold enrichment of patients with generalized epilepsy compared to controls in the top 0.5% highest GE-PRS of the two non-Finnish European cohorts (Epi25: P = 2.60×10-15; Cleveland: P = 1.39×10-2). We conclude that common variant risk associated with epilepsy is significantly enriched in multiple cohorts of patients with epilepsy compared to controls-in particular for generalized epilepsy. As sample sizes and PRS accuracy continue to increase with further common variant discovery, PRS could complement established clinical biomarkers and augment genetic testing for patient classification, comorbidity research, and potentially targeted treatment.


Assuntos
Epilepsias Parciais/genética , Epilepsia Generalizada/genética , Herança Multifatorial/genética , Estudos de Coortes , Efeitos Psicossociais da Doença , Bases de Dados Factuais , Feminino , Predisposição Genética para Doença , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética , População Branca
20.
Epilepsy Behav ; 102: 106669, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31785486

RESUMO

There is a long-documented epidemiological link between epilepsy and psychiatric disorders. People with epilepsy are at an increased risk for a variety of psychiatric illnesses, as are their family members, and people with epilepsy may experience psychiatric side effects because of their antiepileptic drugs (AEDs). In recent years, large-scale, collaborative international studies have begun to shed light on the role of genetic variation in both epilepsy and psychiatric illnesses, such as schizophrenia, depression, and anxiety. But so far, finding shared genetic links between epilepsy and psychiatric illness has proven surprisingly difficult. This review will discuss the prevalence of psychiatric comorbidities in epilepsy, recent advances in genetic research into both epilepsy and psychiatric illness, and the extent of our current knowledge of the genetic overlap between these two important neurobiological conditions.


Assuntos
Epilepsia/genética , Epilepsia/psicologia , Transtornos Mentais/genética , Transtornos Mentais/psicologia , Anticonvulsivantes/uso terapêutico , Ansiedade/epidemiologia , Ansiedade/genética , Ansiedade/psicologia , Comorbidade , Epilepsia/epidemiologia , Humanos , Transtornos Mentais/epidemiologia , Prevalência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA