Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 82(19): 5785-94, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27451448

RESUMO

UNLABELLED: Yersinia ruckeri is the etiological agent of enteric redmouth (ERM) disease of farmed salmonids. Enteric redmouth disease is traditionally associated with rainbow trout (Oncorhynchus mykiss, Walbaum), but its incidence in Atlantic salmon (Salmo salar) is increasing. Yersinia ruckeri isolates recovered from diseased Atlantic salmon have been poorly characterized, and very little is known about the relationship of the isolates associated with these two species. Phenotypic approaches were used to characterize 109 Y. ruckeri isolates recovered over a 14-year period from infected Atlantic salmon in Scotland; 26 isolates from infected rainbow trout were also characterized. Biotyping, serotyping, and comparison of outer membrane protein profiles identified 19 Y. ruckeri clones associated with Atlantic salmon but only five associated with rainbow trout; none of the Atlantic salmon clones occurred in rainbow trout and vice versa These findings suggest that distinct subpopulations of Y. ruckeri are associated with each species. A new O serotype (designated O8) was identified in 56 biotype 1 Atlantic salmon isolates and was the most common serotype identified from 2006 to 2011 and in 2014, suggesting an increased prevalence during the time period sampled. Rainbow trout isolates were represented almost exclusively by the same biotype 2, serotype O1 clone that has been responsible for the majority of ERM outbreaks in this species within the United Kingdom since the 1980s. However, the identification of two biotype 2, serotype O8 isolates in rainbow trout suggests that vaccines containing serotypes O1 and O8 should be evaluated in both rainbow trout and Atlantic salmon for application in Scotland. IMPORTANCE: Vaccination plays an important role in protecting Atlantic salmon against the bacterial pathogen Yersinia ruckeri, but, in recent years, there has been an increasing incidence of vaccine breakdown in salmon. This is largely because current vaccines are aimed at rainbow trout and are based on serotypes specific for this species. A wider range of serotypes is responsible for infection in Atlantic salmon, but very little is known about the diversity of these strains and their relationships to those recovered from rainbow trout. In the present study, we demonstrate that Y. ruckeri isolates recovered from diseased Atlantic salmon in Scotland are more diverse than those from rainbow trout; furthermore, isolates from the two species represent distinct subpopulations. In addition, a new O serotype was identified that is responsible for a significant proportion of the disease in Atlantic salmon. Our findings are likely to have important implications for the development of improved vaccines against Y. ruckeri.


Assuntos
Doenças dos Peixes/epidemiologia , Oncorhynchus mykiss , Salmo salar , Yersiniose/veterinária , Yersinia ruckeri/fisiologia , Animais , Doenças dos Peixes/microbiologia , Prevalência , Escócia/epidemiologia , Yersiniose/epidemiologia , Yersiniose/microbiologia , Yersinia ruckeri/genética
2.
J Chromatogr A ; 1670: 462987, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35367893

RESUMO

The purification of extracellular vesicles (EVs) remains a major hurdle in the progression of fundamental research and the commercial application of EV-based products. In this study, we evaluated the potential of heparin affinity chromatography (HAC) to purify neural stem cell-derived EVs as part of a multistep process. Bind-elute chromatography, such as HAC, is an attractive method of purification because it is highly scalable, robust and can be automated. Our findings support an interaction between EVs and heparin. The recovery of EVs using HAC based on particle counts was a minimum of 68.7%. We found HAC could remove on average 98.8% and 99.0% of residual protein and DNA respectively. In addition to EV purification, HAC was used to separate EVs into three populations based on their affinity to the heparin column. Within these populations, we detected differences in the expression of the exosome-associated protein TSG101 and the tetraspanin immunophenotype. However, the significance of these observations is not clear. Overall HAC shows promise as a potential purification method to capture EVs and this study proposes a novel application of HAC for EV fractionation. Moving forward, a better understanding of the heparin-EV interaction would be required before HAC can be more widely adopted for these applications.


Assuntos
Exossomos , Vesículas Extracelulares , Fracionamento Químico , Cromatografia de Afinidade/métodos , Vesículas Extracelulares/química , Heparina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA