Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 41(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38913681

RESUMO

Natural proteins are frequently marginally stable, and an increase in environmental temperature can easily lead to unfolding. As a result, protein engineering to improve protein stability is an area of intensive research. Nonetheless, since there is usually a high degree of structural homology between proteins from thermophilic organisms and their mesophilic counterparts, the identification of structural determinants for thermoadaptation is challenging. Moreover, in many cases, it has become clear that the success of stabilization strategies is often dependent on the evolutionary history of a protein family. In the last few years, the use of ancestral sequence reconstruction (ASR) as a tool for elucidation of the evolutionary history of functional traits of a protein family has gained strength. Here, we used ASR to trace the evolutionary pathways between mesophilic and thermophilic kinases that participate in the biosynthetic pathway of vitamin B1 in bacteria. By combining biophysics approaches, X-ray crystallography, and molecular dynamics simulations, we found that the thermal stability of these enzymes correlates with their kinetic stability, where the highest thermal/kinetic stability is given by an increase in small hydrophobic amino acids that allow a higher number of interatomic hydrophobic contacts, making this type of interaction the main support for stability in this protein architecture. The results highlight the potential benefits of using ASR to explore the evolutionary history of protein sequence and structure to identify traits responsible for the kinetic and thermal stability of any protein architecture.


Assuntos
Evolução Molecular , Simulação de Dinâmica Molecular , Estabilidade Proteica , Cristalografia por Raios X , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cinética , Estabilidade Enzimática
2.
Clin Immunol ; 255: 109757, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689091

RESUMO

Paired box 1 (PAX1) deficiency has been reported in a small number of patients diagnosed with otofaciocervical syndrome type 2 (OFCS2). We described six new patients who demonstrated variable clinical penetrance. Reduced transcriptional activity of pathogenic variants confirmed partial or complete PAX1 deficiency. Thymic aplasia and hypoplasia were associated with impaired T cell immunity. Corrective treatment was required in 4/6 patients. Hematopoietic stem cell transplantation resulted in poor immune reconstitution with absent naïve T cells, contrasting with the superior recovery of T cell immunity after thymus transplantation. Normal ex vivo differentiation of PAX1-deficient CD34+ cells into mature T cells demonstrated the absence of a hematopoietic cell-intrinsic defect. New overlapping features with DiGeorge syndrome included primary hypoparathyroidism (n = 5) and congenital heart defects (n = 2), in line with PAX1 expression during early embryogenesis. Our results highlight new features of PAX1 deficiency, which are relevant to improving early diagnosis and identifying patients requiring corrective treatment.


Assuntos
Fatores de Transcrição Box Pareados , Imunodeficiência Combinada Severa , Humanos , Fatores de Transcrição Box Pareados/genética , Fenótipo , Linfócitos T , Timo , Imunodeficiência Combinada Severa/genética
3.
Arch Biochem Biophys ; 741: 109602, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37084804

RESUMO

Although ADP-dependent sugar kinases were first described in archaea, at present, the presence of an ADP-dependent glucokinase (ADP-GK) in mammals is well documented. This enzyme is mainly expressed in hematopoietic lineages and tumor tissues, although its role has remained elusive. Here, we report a detailed kinetic characterization of the human ADP-dependent glucokinase (hADP-GK), addressing the influence of a putative signal peptide for endoplasmic reticulum (ER) destination by characterizing a truncated form. The truncated form revealed no significant impact on the kinetic parameters, showing only a slight increase in the Vmax value, higher metal promiscuity, and the same nucleotide specificity as the full-length enzyme. hADP-GK presents an ordered sequential kinetic mechanism in which MgADP is the first substrate to bind and AMP is the last product released, being the same mechanism described for archaeal ADP-dependent sugar kinases, in agreement with the protein topology. Substrate inhibition by glucose was observed due to sugar binding to nonproductive species. Although Mg2+ is an essential component for kinase activity, it also behaves as a partial mixed-type inhibitor for hADP-GK, mainly by decreasing the MgADP affinity. Regarding its distribution, phylogenetic analysis shows that ADP-GK's are present in a wide diversity of eukaryotic organisms although it is not ubiquitous. Eukaryotic ADP-GKs sequences cluster into two main groups, showing differences in the highly conserved sugar-binding motif reported for archaeal enzymes [NX(N)XD] where a cysteine residue is found instead of asparagine in a significant number of enzymes. Site directed mutagenesis of the cysteine residue by asparagine produces a 6-fold decrease in Vmax, suggesting a role for this residue in the catalytic process, probably by facilitating the proper orientation of the substrate to be phosphorylated.


Assuntos
Asparagina , Cisteína , Humanos , Difosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Glucoquinase/química , Glucose/metabolismo , Cinética , Filogenia , Açúcares
4.
Molecules ; 26(4)2021 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-33668501

RESUMO

Polybrominated diphenyl ethers (PBDEs) are a group of molecules with an ambiguous background in literature. PBDEs were first isolated from marine sponges of Dysidea species in 1981 and have been under continuous research to the present day. This article summarizes the two research aspects, (i) the marine compound chemistry research dealing with naturally produced PBDEs and (ii) the environmental toxicology research dealing with synthetically-produced brominated flame-retardant PBDEs. The different bioactivity patterns are set in relation to the structural similarities and dissimilarities between both groups. In addition, this article gives a first structure-activity relationship analysis comparing both groups of PBDEs. Moreover, we provide novel data of a promising anticancer therapeutic PBDE (i.e., 4,5,6-tribromo-2-(2',4'-dibromophenoxy)phenol; termed P01F08). It has been known since 1995 that P01F08 exhibits anticancer activity, but the detailed mechanism remains poorly understood. Only recently, Mayer and colleagues identified a therapeutic window for P01F08, specifically targeting primary malignant cells in a low µM range. To elucidate the mechanistic pathway of cell death induction, we verified and compared its cytotoxicity and apoptosis induction capacity in Ramos and Jurkat lymphoma cells. Moreover, using Jurkat cells overexpressing antiapoptotic Bcl-2, we were able to show that P01F08 induces apoptosis mainly through the intrinsic mitochondrial pathway.


Assuntos
Antineoplásicos/farmacologia , Pesquisa Biomédica , Éteres Difenil Halogenados/farmacologia , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Éteres Difenil Halogenados/síntese química , Éteres Difenil Halogenados/química , Humanos , Relação Estrutura-Atividade , Terminologia como Assunto
5.
Arch Biochem Biophys ; 688: 108389, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32387178

RESUMO

The hydroxymethylpyrimidine phosphate kinases (HMPPK) encoded by the thiD gene are involved in the thiamine biosynthesis pathway, can perform two consecutive phosphorylations of 4-amino-5-hydroxymethyl-2-methyl pyrimidine (HMP) and are found in thermophilic and mesophilic bacteria, but only a few characterizations of mesophilic enzymes are available. The presence of another homolog enzyme (pyridoxal kinase) that can only catalyze the first phosphorylation of HMP and encoded by pdxK gene, has hampered a precise annotation in this enzyme family. Here we report the kinetic characterization of two HMPPK with structure available, the mesophilic and thermophilic enzyme from Salmonella typhimurium (StHMPPK) and Thermus thermophilus (TtHMPPK), respectively. Also, given their high structural similarity, we have analyzed the structural determinants of protein thermal stability in these enzymes by molecular dynamics simulation. The results show that pyridoxal kinases (PLK) from gram-positive bacteria (PLK/HMPPK-like enzymes) constitute a phylogenetically separate group from the canonical PLK, but closely related to the HMPPK, so the PLK/HMPPK-like and canonical PLK, both encoded by pdxK genes, are different and must be annotated distinctly. The kinetic characterization of StHMPPK and TtHMPPK, shows that they perform double phosphorylation on HMP, both enzymes are specific for HMP, not using pyridoxal-like molecules as substrates and their kinetic mechanism involves the formation of a ternary complex. Molecular dynamics simulation shows that StHMPPK and TtHMPPK have striking differences in their conformational flexibility, which can be correlated with the hydrophobic packing and electrostatic interaction network given mainly by salt bridge bonds, but interestingly not by the number of hydrogen bond interactions as reported for other thermophilic enzymes. ENZYMES: EC 2.7.1.49, EC 2.7.4.7, EC 2.7.1.35, EC 2.7.1.50.


Assuntos
Proteínas de Bactérias/química , Fosfotransferases (Aceptor do Grupo Fosfato)/química , Proteínas de Bactérias/isolamento & purificação , Ensaios Enzimáticos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Simulação de Dinâmica Molecular , Fosfotransferases (Aceptor do Grupo Fosfato)/isolamento & purificação , Conformação Proteica , Estabilidade Proteica , Pirimidinas/química , Salmonella typhimurium/enzimologia , Eletricidade Estática , Especificidade por Substrato , Thermus thermophilus/enzimologia
7.
FEBS J ; 291(1): 70-91, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37549040

RESUMO

Polyethylene terephthalate (PET) is a widely used synthetic polymer and known to contaminate marine and terrestrial ecosystems. Only few PET-active microorganisms and enzymes (PETases) are currently known, and it is debated whether degradation activity for PET originates from promiscuous enzymes with broad substrate spectra that primarily act on natural polymers or other bulky substrates, or whether microorganisms evolved their genetic makeup to accepting PET as a carbon source. Here, we present a predicted diene lactone hydrolase designated PET40, which acts on a broad spectrum of substrates, including PET. It is the first esterase with activity on PET from a GC-rich Gram-positive Amycolatopsis species belonging to the Pseudonocardiaceae (Actinobacteria). It is highly conserved within the genera Amycolatopsis and Streptomyces. PET40 was identified by sequence-based metagenome search using a PETase-specific hidden Markov model. Besides acting on PET, PET40 has a versatile substrate spectrum, hydrolyzing δ-lactones, ß-lactam antibiotics, the polyester-polyurethane Impranil® DLN, and various para-nitrophenyl ester substrates. Molecular docking suggests that the PET degradative activity is likely a result of the promiscuity of PET40, as potential binding modes were found for substrates encompassing mono(2-hydroxyethyl) terephthalate, bis(2-hydroxyethyl) terephthalate, and a PET trimer. We also solved the crystal structure of the inactive PET40 variant S178A to 1.60 Å resolution. PET40 is active throughout a wide pH (pH 4-10) and temperature range (4-65 °C) and remarkably stable in the presence of 5% SDS, making it a promising enzyme as a starting point for further investigations and optimization approaches.


Assuntos
Esterases , Streptomyces , Esterases/genética , Polietilenotereftalatos/metabolismo , Metagenoma , Ecossistema , Simulação de Acoplamento Molecular , Hidrolases/química , Streptomyces/genética , Polímeros
8.
Front Genet ; 10: 1406, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32174954

RESUMO

Single-nucleotide polymorphisms (SNPs) are single genetic code variations considered one of the most common forms of nucleotide modifications. Such SNPs can be located in genes associated to immune response and, therefore, they may have direct implications over the phenotype of susceptibility to infections affecting the productive sector. In this study, a set of immune-related genes (cc motif chemokine 19 precursor [ccl19], integrin ß2 (itß2, also named cd18), glutathione transferase omega-1 [gsto-1], heat shock 70 KDa protein [hsp70], major histocompatibility complex class I [mhc-I]) were analyzed to identify SNPs by data mining. These genes were chosen based on their previously reported expression on infectious pancreatic necrosis virus (IPNV)-infected Atlantic salmon phenotype. The available EST sequences for these genes were obtained from the Unigene database. Twenty-eight SNPs were found in the genes evaluated and identified most of them as transition base changes. The effect of the SNPs located on the 5'-untranslated region (UTR) or 3'-UTR upon transcription factor binding sites and alternative splicing regulatory motifs was assessed and ranked with a low-medium predicted FASTSNP score risk. Synonymous SNPs were found on itß2 (c.2275G > A), gsto-1 (c.558G > A), and hsp70 (c.1950C > T) with low FASTSNP predicted score risk. The difference in the relative synonymous codon usage (RSCU) value between the variant codons and the wild-type codon (ΔRSCU) showed one negative (hsp70 c.1950C > T) and two positive ΔRSCU values (itß2 c.2275G > A; gsto-1 c.558G > A), suggesting that these synonymous SNPs (sSNPs) may be associated to differences in the local rate of elongation. Nonsynonymous SNPs (nsSNPs) in the gsto-1 translatable gene region were ranked, using SIFT and POLYPHEN web-tools, with the second highest (c.205A > G; c484T > C) and the highest (c.499T > C; c.769A > C) predicted score risk possible. Using homology modeling to predict the effect of these nonsynonymous SNPs, the most relevant nucleotide changes for gsto-1 were observed for the nsSNPs c.205A > G, c484T > C, and c.769A > C. Molecular dynamics was assessed to analyze if these GSTO-1 variants have significant differences in their conformational dynamics, suggesting these SNPs could have allosteric effects modulating its catalysis. Altogether, these results suggest that candidate SNPs identified may play a crucial potential role in the immune response of Atlantic salmon.

9.
Front Microbiol ; 9: 1305, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29997580

RESUMO

Halophilic organisms inhabit hypersaline environments where the extreme ionic conditions and osmotic pressure have driven the evolution of molecular adaptation mechanisms. Understanding such mechanisms is limited by the common difficulties encountered in cultivating such organisms. Within the Euryarchaeota, for example, only the Halobacteria and the order Methanosarcinales include readily cultivable halophilic species. Furthermore, only the former have been extensively studied in terms of their component proteins. Here, in order to redress this imbalance, we investigate the halophilic adaptation of glycolytic enzymes from the ADP-dependent phosphofructokinase/glucokinase family (ADP-PFK/GK) derived from organisms of the order Methanosarcinales. Structural analysis of proteins from non-halophilic and halophilic Methanosarcinales shows an almost identical composition and distribution of amino acids on both the surface and within the core. However, these differ from those observed in Halobacteria or Eukarya. Proteins from Methanosarcinales display a remarkable increase in surface lysine content and have no reduction to the hydrophobic core, contrary to the features ubiquitously observed in Halobacteria and which are thought to be the main features responsible for their halophilic properties. Biochemical characterization of recombinant ADP-PFK/GK from M. evestigatum (halophilic) and M. mazei (non-halophilic) shows the activity of both these extant enzymes to be only moderately inhibited by salt. Nonetheless, its activity over time is notoriously stabilized by salt. Furthermore, glycine betaine has a protective effect against KCl inhibition and enhances the thermal stability of both enzymes. The resurrection of the last common ancestor of ADP-PFK/GK from Methanosarcinales shows that the ancestral enzyme displays an extremely high salt tolerance and thermal stability. Structure determination of the ancestral protein reveals unique traits such as an increase in the Lys and Glu content at the protein surface and yet no reduction to the volume of the hydrophobic core. Our results suggest that the halophilic character is an ancient trait in the evolution of this protein family and that proteins from Methanosarcinales have adapted to highly saline environments by a non-canonical strategy, different from that currently proposed for Halobacteria. These results open up new avenues for the search and development of novel salt tolerant biocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA