Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 300(2): 105608, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159849

RESUMO

Phototransduction in retinal rods occurs when the G protein-coupled photoreceptor rhodopsin triggers the activation of phosphodiesterase 6 (PDE6) by GTP-bound alpha subunits of the G protein transducin (GαT). Recently, we presented a cryo-EM structure for a complex between two GTP-bound recombinant GαT subunits and native PDE6, that included a bivalent antibody bound to the C-terminal ends of GαT and the inhibitor vardenafil occupying the active sites on the PDEα and PDEß subunits. We proposed GαT-activated PDE6 by inducing a striking reorientation of the PDEγ subunits away from the catalytic sites. However, questions remained including whether in the absence of the antibody GαT binds to PDE6 in a similar manner as observed when the antibody is present, does GαT activate PDE6 by enabling the substrate cGMP to access the catalytic sites, and how does the lipid membrane enhance PDE6 activation? Here, we demonstrate that 2:1 GαT-PDE6 complexes form with either recombinant or retinal GαT in the absence of the GαT antibody. We show that GαT binding is not necessary for cGMP nor competitive inhibitors to access the active sites; instead, occupancy of the substrate binding sites enables GαT to bind and reposition the PDE6γ subunits to promote catalytic activity. Moreover, we demonstrate by reconstituting GαT-stimulated PDE6 activity in lipid bilayer nanodiscs that the membrane-induced enhancement results from an increase in the apparent binding affinity of GαT for PDE6. These findings provide new insights into how the retinal G protein stimulates rapid catalytic turnover by PDE6 required for dim light vision.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 6 , Modelos Moleculares , Transducina , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Guanosina Trifosfato/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/enzimologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Transducina/química , Transducina/genética , Transducina/metabolismo , Animais , Bovinos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estrutura Quaternária de Proteína , Ligação Proteica/efeitos dos fármacos , Domínio Catalítico , 1-Metil-3-Isobutilxantina/farmacologia , Bicamadas Lipídicas/metabolismo , Ativação Enzimática
2.
Nat Commun ; 15(1): 1971, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438397

RESUMO

The glutaminase enzymes GAC and GLS2 catalyze the hydrolysis of glutamine to glutamate, satisfying the 'glutamine addiction' of cancer cells. They are the targets of anti-cancer drugs; however, their mechanisms of activation and catalytic activity have been unclear. Here we demonstrate that the ability of GAC and GLS2 to form filaments is directly coupled to their catalytic activity and present their cryo-EM structures which provide a view of the conformational states essential for catalysis. Filament formation guides an 'activation loop' to assume a specific conformation that works together with a 'lid' to close over the active site and position glutamine for nucleophilic attack by an essential serine. Our findings highlight how ankyrin repeats on GLS2 regulate enzymatic activity, while allosteric activators stabilize, and clinically relevant inhibitors block, filament formation that enables glutaminases to catalyze glutaminolysis and support cancer progression.


Assuntos
Glutaminase , Neoplasias , Glutamina , Citoesqueleto , Catálise , Ácido Glutâmico
3.
bioRxiv ; 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38464280

RESUMO

Phosphatase and Tensin Homologue (PTEN) is one of the most frequently lost tumor suppressors in cancer and the predominant negative regulator of the PI3K/AKT signaling axis. A growing body of evidence has highlighted the loss of PTEN with immuno-modulatory functions including the upregulation of the programmed death ligand-1 (PD-L1), an altered tumor derived secretome that drives an immunosuppressive tumor immune microenvironment (TIME), and resistance to certain immunotherapies. Given their roles in immunosuppression and tumor growth, we examined whether the loss of PTEN would impact the biogenesis, cargo, and function of extracellular vesicles (EVs) in the context of the anti-tumor associated cytokine interferon-γ (IFN-γ). Through genetic and pharmacological approaches, we show that PD-L1 expression is regulated by JAK/STAT signaling, not PI3K signaling. Instead, we observe that PTEN loss positively upregulates cell surface levels of PD-L1 and enhances the biogenesis of EVs enriched with PD-L1 in a PI3K-dependent manner. We demonstrate that because of these changes, EVs derived from glioma cells lacking PTEN have a greater ability to suppress T cell receptor (TCR) signaling. Taken together, these findings provide important new insights into how the loss of PTEN can contribute to an immunosuppressive TIME, facilitate immune evasion, and highlight a novel role for PI3K signaling in the regulation of EV biogenesis and the cargo they contain.

4.
Commun Biol ; 7(1): 982, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39134806

RESUMO

Transglutaminase 2 (TG2) is a GTP-binding, protein-crosslinking enzyme that has been investigated as a therapeutic target for Celiac disease, neurological disorders, and aggressive cancers. TG2 has been suggested to adopt two conformational states that regulate its functions: a GTP-bound, closed conformation, and a calcium-bound, crosslinking-active open conformation. TG2 mutants that constitutively adopt an open conformation are cytotoxic to cancer cells. Thus, small molecules that bind and stabilize the open conformation of TG2 could offer a new therapeutic strategy. Here, we investigate TG2, using static and time-resolved small-angle X-ray scattering (SAXS) and single-particle cryoelectron microscopy (cryo-EM), to determine the conformational states responsible for conferring its biological effects. We also describe a newly developed TG2 inhibitor, LM11, that potently kills glioblastoma cells and use SAXS to investigate how LM11 affects the conformational states of TG2. Using SAXS and cryo-EM, we show that guanine nucleotides bind and stabilize a monomeric closed conformation while calcium binds to an open state that can form higher order oligomers. SAXS analysis suggests how a TG2 mutant that constitutively adopts the open state binds nucleotides through an alternative mechanism to wildtype TG2. Furthermore, we use time resolved SAXS to show that LM11 increases the ability of calcium to bind and stabilize an open conformation, which is not reversible by guanine nucleotides and is cytotoxic to cancer cells. Taken together, our findings demonstrate that the conformational dynamics of TG2 are more complex than previously suggested and highlight how conformational stabilization of TG2 by LM11 maintains TG2 in a cytotoxic conformational state.


Assuntos
Sobrevivência Celular , Proteínas de Ligação ao GTP , Conformação Proteica , Proteína 2 Glutamina gama-Glutamiltransferase , Transglutaminases , Proteína 2 Glutamina gama-Glutamiltransferase/metabolismo , Humanos , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/genética , Transglutaminases/metabolismo , Transglutaminases/química , Transglutaminases/genética , Sobrevivência Celular/efeitos dos fármacos , Microscopia Crioeletrônica , Linhagem Celular Tumoral , Morte Celular/efeitos dos fármacos , Espalhamento a Baixo Ângulo , Difração de Raios X , Cálcio/metabolismo
5.
bioRxiv ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38370687

RESUMO

Transglutaminase 2 (TG2) is a GTP-binding/protein-crosslinking enzyme that has been investigated as a therapeutic target for Celiac disease, neurological disorders, and aggressive cancers. TG2 has been suggested to adopt two conformational states that regulate its functions: a GTP-bound, closed conformation, and a calcium-bound, crosslinking-active open conformation. TG2 mutants that constitutively adopt an open conformation are cytotoxic to cancer cells. Thus, small molecules that maintain the open conformation of TG2 could offer a new therapeutic strategy. Here, we investigate TG2, using static and time-resolved small-angle X-ray scattering (SAXS) and single-particle cryoelectron microscopy (cryo-EM), to determine the conformational states responsible for conferring its biological effects. We also describe a newly developed TG2 inhibitor, LM11, that potently kills glioblastoma cells and use SAXS to investigate how LM11 affects the conformational states of TG2. Using SAXS and cryo-EM, we show that guanine nucleotide-bound TG2 adopts a monomeric closed conformation while calcium-bound TG2 assumes an open conformational state that can form higher order oligomers. SAXS analysis also suggests how a TG2 mutant that constitutively adopts the open state binds nucleotides through an alternative mechanism to wildtype TG2. Furthermore, we use time-resolved SAXS to show that LM11 increases the ability of calcium to drive TG2 to an open conformation, which is not reversible by guanine nucleotides and is cytotoxic to cancer cells. Taken together, our findings demonstrate that the conformational dynamics of TG2 are more complex than previously suggested and highlight how conformational stabilization of TG2 by LM11 maintains TG2 in a cytotoxic conformational state.

6.
Nat Biomed Eng ; 8(4): 415-426, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38374224

RESUMO

The blood-brain barrier (BBB) restricts the systemic delivery of messenger RNAs (mRNAs) into diseased neurons. Although leucocyte-derived extracellular vesicles (EVs) can cross the BBB at inflammatory sites, it is difficult to efficiently load long mRNAs into the EVs and to enhance their neuronal uptake. Here we show that the packaging of mRNA into leucocyte-derived EVs and the endocytosis of the EVs by neurons can be enhanced by engineering leucocytes to produce EVs that incorporate retrovirus-like mRNA-packaging capsids. We transfected immortalized and primary bone-marrow-derived leucocytes with DNA or RNA encoding the capsid-forming activity-regulated cytoskeleton-associated (Arc) protein as well as capsid-stabilizing Arc 5'-untranslated-region RNA elements. These engineered EVs inherit endothelial adhesion molecules from donor leukocytes, recruit endogenous enveloping proteins to their surface, cross the BBB, and enter the neurons in neuro-inflammatory sites. Produced from self-derived donor leukocytes, the EVs are immunologically inert, and enhanced the neuronal uptake of the packaged mRNA in a mouse model of low-grade chronic neuro-inflammation.


Assuntos
Barreira Hematoencefálica , Vesículas Extracelulares , Neurônios , RNA Mensageiro , Animais , Neurônios/metabolismo , Vesículas Extracelulares/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Camundongos , Barreira Hematoencefálica/metabolismo , Retroviridae/genética , Capsídeo/metabolismo , Leucócitos/metabolismo , Humanos , Camundongos Endogâmicos C57BL
7.
Res Sq ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38746473

RESUMO

Oral tumors are relatively common in dogs, and canine oral squamous cell carcinoma (COSCC) is the most prevalent oral malignancy of epithelial origin. COSCC is locally aggressive with up to 20% of patients showing regional or distant metastasis at the time of diagnosis. The treatment of choice most typically involves wide surgical excision. Although long-term remission is possible, treatments are associated with significant morbidity and can negatively impact functionality and quality of life. OSCCs have significant upregulation of the RAS-RAF-MEK-MAPK signaling axis, and we had previously hypothesized that small-molecule inhibitors that target RAS signaling might effectively inhibit tumor growth and progression. Here, we demonstrate that the MEK inhibitor trametinib, an FDA-approved drug for human cancers, significantly blocks the growth of several COSCC cell lines established from current patient tumor samples. We further show clinical evidence that the drug is able to cause significant tumor regression in some patients with spontaneously occurring COSCC. Given the limited treatment options available and the high rate of owner rejection of these offered options, these findings provide new hope that more acceptable treatment options may soon enter the veterinary clinic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA