Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Foods Hum Nutr ; 75(1): 33-40, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31741122

RESUMO

Nowadays, a growing body of evidence supports the view that plants offer an extraordinary opportunity to discover and develop new promising therapeutic strategies for many diseases, including cancer. Here we tested the anticancer action against Hepatocellular carcinoma (HCC) of extracts obtained from two plants harvested in Apulia, namely Brassica oleracea L. and Crithmum maritimum L. B. oleracea was grown in biodynamical agriculture without any agrochemical input, instead C. maritimum was collected on Apulian coasts and is still commonly eaten in Apulia. HCC, one of the most frequent tumors worldwide, is estimated to become the third leading cause of cancer-related deaths in Western Countries by 2030. The approved synthetic drugs for the treatment of HCC are currently inadequate in terms of therapeutic results and tolerability. Hence, aim of the present study was to test the anticancer action against HCC of extracts obtained from Brassica oleracea L. and Crithmum maritimum L. We preliminary prepared extracts from both plants using four solvents with different polarity: hexane, ethyl acetate, methanol and ethanol. Then, we tested the effect of the different fractions in inhibiting HCC cell growth. Finally, we characterized the mechanism of action of the most effective fraction. We found that ethyl acetate fractions from both plants were the most effective in inhibiting HCC growth. In particular, we demonstrated that these fractions effectively reduce HCC growth by exerting, on one hand, a cytostatic effect through their action on the cell cycle, and on the other hand by triggering apoptosis and necrosis. Our findings support the notion that ethyl acetate fractions from Apulian B. oleracea and C. maritimum can be in perspective considered as promising tools to expand the opportunities to identify new and not toxic anticancer therapeutic approaches for HCC. Further pharmacological investigations will shed light on how this could be effectively achieved. Graphical Abstract Experimental workflow for the detection of the ethyl acetate extract of Brassica oleracea L. and Crithmum maritimum L. as an active fraction in inhibiting HCC cell growth.


Assuntos
Brassica , Carcinoma Hepatocelular , Neoplasias Hepáticas , Acetatos , Humanos , Extratos Vegetais
2.
J Pharm Pharmacol ; 73(10): 1369-1376, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34014301

RESUMO

OBJECTIVES: Hepatocellular carcinoma (HCC) is one of the most frequent tumours worldwide and available drugs are inadequate for therapeutic results and tolerability. Hence, novel effective therapeutic tools with fewer side effects are of paramount importance. We have previously shown that Crithmum maritimum ethyl acetate extract exerts a cytostatic effect in HCC cells. Here, we tested whether C. maritimum ethyl acetate extract in combination with half sorafenib IC50 dose ameliorated efficacy and toxicity of sorafenib in inhibiting liver cancer cell growth. Moreover, we investigated the mechanisms involved. METHODS: Two HCC cell lines (Huh7 and HepG2) were treated with C. maritimum ethyl acetate extract and half IC50 sorafenib dose usually employed in vitro. Then, cell proliferation, growth kinetics and cell toxicity were analysed together with an investigation of the cellular mechanisms involved, focusing on cell cycle regulation and apoptosis. KEY FINDINGS: Results show that combined treatment with C. maritimum ethyl acetate extract and half IC50 sorafenib dose decreased cell proliferation comparably to full-dose sorafenib without increasing cell toxicity as confirmed by the effect on cell cycle regulation and apoptosis. CONCLUSIONS: These results provide scientific support for the possibility of an effective integrative therapeutic approach for HCC with fewer side effects on patients.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Apiaceae , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Fitoterapia , Extratos Vegetais/uso terapêutico , Sorafenibe/administração & dosagem , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos Fitogênicos/farmacologia , Apoptose , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Sinergismo Farmacológico , Células Hep G2 , Humanos , Concentração Inibidora 50 , Fígado/efeitos dos fármacos , Extratos Vegetais/farmacologia , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico
3.
Sci Rep ; 11(1): 1259, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441568

RESUMO

Hepatocellular carcinoma (HCC) is nowadays the sixth cause of tumour-related deceases worldwide, estimated to become the third in Western countries by 2030. New drugs for HCC treatment still have many adverse effects. Several lines of evidence indicate that plant metabolites offer concrete opportunities for developing new therapeutic strategies for many diseases, including cancer. We previously reported that ethyl acetate extract of a spontaneous edible plant harvested in Apulia, Crithmum maritimum, significantly inhibited cell growth in HCC cells. By 1H-NMR spectroscopy, here we show that Crithmum maritimum ethyl acetate extract counteracts the Warburg effect, by reducing intracellular lactate, inhibits protein anabolism, by decreasing amino acid level, and affects membrane biosynthesis by lowering choline and phosphocholine. Also, we observed an effect on lipid homeostasis, with a reduction in triglycerides, cholesterol, monounsaturated fatty acids (MUFA), and diunsaturated fatty acids (DUFA), and an increase in polyunsaturated fatty acids (PUFA). Taken together, these data demonstrate that Crithmum maritimum-induced cytostasis is exerted through a multi-effect action, targeting key metabolic processes in HCC cells. Overall, our findings highlight the role of Crithmum maritimum as a promising tool for the prevention and the improvement of the therapeutic options for HCC and other types of tumours.


Assuntos
Acetatos/química , Antineoplásicos Fitogênicos , Apiaceae/química , Carcinoma Hepatocelular , Proliferação de Células/efeitos dos fármacos , Neoplasias Hepáticas , Extratos Vegetais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Metabolômica , Ressonância Magnética Nuclear Biomolecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia
4.
Pathogens ; 10(6)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072394

RESUMO

Xylella fastidiosa subsp. pauca is the causal agent of "olive quick decline syndrome" in Salento (Apulia, Italy). On April 2015, we started interdisciplinary studies to provide a sustainable control strategy for this pathogen that threatens the multi-millennial olive agroecosystem of Salento. Confocal laser scanning microscopy and fluorescence quantification showed that a zinc-copper-citric acid biocomplex-Dentamet®-reached the olive xylem tissue either after the spraying of the canopy or injection into the trunk, demonstrating its effective systemicity. The biocomplex showed in vitro bactericidal activity towards all X. fastidiosa subspecies. A mid-term evaluation of the control strategy performed in some olive groves of Salento indicated that this biocomplex significantly reduced both the symptoms and X. f. subsp. pauca cell concentration within the leaves of the local cultivars Ogliarola salentina and Cellina di Nardò. The treated trees started again to yield. A 1H-NMR metabolomic approach revealed, upon the treatments, a consistent increase in malic acid and γ-aminobutyrate for Ogliarola salentina and Cellina di Nardò trees, respectively. A novel endotherapy technique allowed injection of Dentamet® at low pressure directly into the vascular system of the tree and is currently under study for the promotion of resprouting in severely attacked trees. There are currently more than 700 ha of olive groves in Salento where this strategy is being applied to control X. f. subsp. pauca. These results collectively demonstrate an efficient, simple, low-cost, and environmentally sustainable strategy to control this pathogen in Salento.

5.
Appl Biosaf ; 24(2): 96-99, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36033935

RESUMO

Introduction: Xylella fastidiosa is a quarantine phytopathogen for the European Plant Protection Organization and currently infects olive trees in the Apulia region (southern Italy). Upon the Implementing Decision of the European Union 2016/764 of May 12, 2016, extensive monitoring surveys were performed on approximately 190 000 ha to ascertain the possible occurrence of X. fastidiosa. Objectives: The primary objectives of the analysis were to start to collect epidemiological data on X. fastidiosa occurrence in areas far from the initial outbreaks and discuss the results of the pathogen detection. Methods: A total of 220 279 olive trees were inspected. Basic information on farm and trees management was obtained. A total of 13 706 olive trees were analyzed through serological and molecular techniques to verify the possible occurrence of the bacterium. Results: The cultivars "Nociara," "Cima di Melfi," and "Cellina di Nardò" showed the highest occurrence of decline symptoms. Tree age appears to be related to the incidence of decline symptoms. Olive trees growing in well-managed soils showed fewer symptoms than trees cultivated in farms where such agronomic techniques are not regularly performed. X. fastidiosa was detected in 2078 samples taken from symptomatic trees and 1653 samples obtained from asymptomatic trees. In 3300 samples taken from symptomatic trees, the bacterium was not detected. Conclusions: Implementation and utilization of reliable in situ detection techniques could increase the number of sampled trees in each plot, thus allowing a more extensive and robust assessment of X. fastidiosa-infected plants in areas where the pathogen inoculums are still low.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA