Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 593(7859): 429-434, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34012082

RESUMO

Gene-editing technologies, which include the CRISPR-Cas nucleases1-3 and CRISPR base editors4,5, have the potential to permanently modify disease-causing genes in patients6. The demonstration of durable editing in target organs of nonhuman primates is a key step before in vivo administration of gene editors to patients in clinical trials. Here we demonstrate that CRISPR base editors that are delivered in vivo using lipid nanoparticles can efficiently and precisely modify disease-related genes in living cynomolgus monkeys (Macaca fascicularis). We observed a near-complete knockdown of PCSK9 in the liver after a single infusion of lipid nanoparticles, with concomitant reductions in blood levels of PCSK9 and low-density lipoprotein cholesterol of approximately 90% and about 60%, respectively; all of these changes remained stable for at least 8 months after a single-dose treatment. In addition to supporting a 'once-and-done' approach to the reduction of low-density lipoprotein cholesterol and the treatment of atherosclerotic cardiovascular disease (the leading cause of death worldwide7), our results provide a proof-of-concept for how CRISPR base editors can be productively applied to make precise single-nucleotide changes in therapeutic target genes in the liver, and potentially in other organs.


Assuntos
Sistemas CRISPR-Cas , LDL-Colesterol/sangue , Edição de Genes , Modelos Animais , Pró-Proteína Convertase 9/genética , Adenina/metabolismo , Animais , Células Cultivadas , Feminino , Hepatócitos/metabolismo , Humanos , Fígado/enzimologia , Mutação com Perda de Função , Macaca fascicularis/sangue , Macaca fascicularis/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese Sítio-Dirigida , Pró-Proteína Convertase 9/sangue , Pró-Proteína Convertase 9/metabolismo , Fatores de Tempo
2.
Arterioscler Thromb Vasc Biol ; 38(1): 12-18, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28838920

RESUMO

Although human genetics has resulted in the identification of novel lipid-related genes that can be targeted for the prevention of atherosclerotic vascular disease, medications targeting these genes or their protein products have short-term effects and require frequent administration during the course of the lifetime for maximal benefit. Genome-editing technologies, such as CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR-associated 9) have the potential to permanently alter genes in the body and produce long-term and even lifelong protection against atherosclerosis. In this review, we discuss recent advances in genome-editing technologies and early proof-of-concept studies of somatic in vivo genome editing in mice that highlight the potential of genome editing to target disease-related genes in patients, which would establish a novel therapeutic paradigm for atherosclerosis.


Assuntos
Artérias/metabolismo , Aterosclerose/terapia , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Dislipidemias/terapia , Edição de Genes/métodos , Terapia Genética/métodos , Metabolismo dos Lipídeos/genética , Lipídeos/sangue , Animais , Artérias/patologia , Aterosclerose/sangue , Aterosclerose/genética , Aterosclerose/patologia , Proteínas Associadas a CRISPR/genética , Dislipidemias/sangue , Dislipidemias/genética , Dislipidemias/patologia , Regulação da Expressão Gênica , Terapia Genética/efeitos adversos , Humanos , Placa Aterosclerótica
3.
Arterioscler Thromb Vasc Biol ; 37(9): 1741-1747, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28751571

RESUMO

OBJECTIVE: High-efficiency genome editing to disrupt therapeutic target genes, such as PCSK9 (proprotein convertase subtilisin/kexin type 9), has been demonstrated in preclinical animal models, but there are safety concerns because of the unpredictable nature of cellular repair of double-strand breaks, as well as off-target mutagenesis. Moreover, precise knock-in of specific nucleotide changes-whether to introduce or to correct gene mutations-has proven to be inefficient in nonproliferating cells in vivo. Base editors comprising CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats [CRISPR]-CRISPR-associated 9) fused to a cytosine deaminase domain can effect the alteration of cytosine bases to thymine bases in genomic DNA in a sequence-specific fashion, without the need for double-strand DNA breaks. The efficacy of base editing has not been established in vivo. The goal of this study was to assess whether in vivo base editing could be used to modify the mouse Pcsk9 gene in a sequence-specific fashion in the liver in adult mice. APPROACH AND RESULTS: We screened base editors for activity in cultured cells, including human-induced pluripotent stem cells. We then delivered a base editor into the livers of adult mice to assess whether it could introduce site-specific nonsense mutations into the Pcsk9 gene. In adult mice, this resulted in substantially reduced plasma PCSK9 protein levels (>50%), as well as reduced plasma cholesterol levels (≈30%). There was no evidence of off-target mutagenesis, either cytosine-to-thymine edits or indels. CONCLUSIONS: These results demonstrate the ability to precisely introduce therapeutically relevant nucleotide variants into the genome in somatic tissues in adult mammals, as well as highlighting a potentially safer alternative to therapeutic genome editing.


Assuntos
Composição de Bases , Sistemas CRISPR-Cas , Códon sem Sentido , Edição de Genes/métodos , Regulação Enzimológica da Expressão Gênica , Terapia Genética/métodos , Fígado/enzimologia , Pró-Proteína Convertase 9/genética , Animais , Biomarcadores/sangue , Linhagem Celular Tumoral , Colesterol/sangue , Regulação para Baixo , Genótipo , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/enzimologia , Camundongos Endogâmicos C57BL , Fenótipo , Pró-Proteína Convertase 9/sangue , Pró-Proteína Convertase 9/metabolismo , Fatores de Tempo , Transfecção
4.
Curr Atheroscler Rep ; 19(7): 32, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28550381

RESUMO

PURPOSE OF REVIEW: Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated 9 (Cas9) has recently emerged as a top genome editing technology and has afforded investigators the ability to more easily study a number of diseases. This review discusses CRISPR/Cas9's advantages and limitations and highlights a few recent reports on genome editing applications for alleviating dyslipidemia through disruption of proprotein convertase subtilisin/kexin type 9 (PCSK9). RECENT FINDINGS: Targeting of mouse Pcsk9 using CRISPR/Cas9 technology has yielded promising results for lowering total cholesterol levels, and several recent findings are highlighted in this review. Reported on-target mutagenesis efficiency is as high as 90% with a subsequent 40% reduction of blood cholesterol levels in mice, highlighting the potential for use as a therapeutic in human patients. The ability to characterize and treat diseases is becoming easier with the recent advances in genome editing technologies. In this review, we discuss how genome editing strategies can be of use for potential therapeutic applications.


Assuntos
Sistemas CRISPR-Cas , Dislipidemias/terapia , Edição de Genes/métodos , Pró-Proteína Convertase 9/genética , Animais , Colesterol/sangue , Dislipidemias/sangue , Dislipidemias/genética , Humanos , Camundongos , Mutagênese Sítio-Dirigida
5.
Curr Cardiol Rep ; 19(3): 22, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28220462

RESUMO

PURPOSE OF REVIEW: The opportunities afforded through the recent advent of genome-editing technologies have allowed investigators to more easily study a number of diseases. The advantages and limitations of the most prominent genome-editing technologies are described in this review, along with potential applications specifically focused on cardiovascular diseases. RECENT FINDINGS: The recent genome-editing tools using programmable nucleases, such as zinc-finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9), have rapidly been adapted to manipulate genes in a variety of cellular and animal models. A number of recent cardiovascular disease-related publications report cases in which specific mutations are introduced into disease models for functional characterization and for testing of therapeutic strategies. Recent advances in genome-editing technologies offer new approaches to understand and treat diseases. Here, we discuss genome editing strategies to easily characterize naturally occurring mutations and offer strategies with potential clinical relevance.


Assuntos
Doenças Cardiovasculares/genética , Edição de Genes/métodos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Humanos , Mutação
6.
Arterioscler Thromb Vasc Biol ; 35(10): 2104-13, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26315403

RESUMO

OBJECTIVE: Oxidative stress associated with cardiovascular disease can produce various oxidized lipids, including cholesterol oxides, such as 7-hydroperoxide (7-OOH), 7-hydroxide (7-OH), and 7-ketone (7=O). Unlike 7=O and 7-OH, 7-OOH is redox active, giving rise to the others via potentially toxic-free radical reactions. We tested the novel hypothesis that under oxidative stress conditions, steroidogenic acute regulatory (StAR) family proteins not only deliver cholesterol to/into mitochondria of vascular macrophages, but also 7-OOH, which induces peroxidative damage that impairs early stage reverse cholesterol transport. APPROACH AND RESULTS: Stimulation of human monocyte-derived THP-1 macrophages with dibutyryl-cAMP resulted in substantial upregulation of StarD1 and ATP-binding cassette (ABC) transporter, ABCA1. Small interfering RNA-induced StarD1 knockdown before stimulation had no effect on StarD4, but reduced ABCA1 upregulation, linking the latter to StarD1 functionality. Mitochondria in stimulated StarD1-knockdown cells internalized 7-OOH slower than nonstimulated controls and underwent less 7-OOH-induced lipid peroxidation and membrane depolarization, as probed with C11-BODIPY (4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-inda-cene-3-undecanoic acid) and JC-1 (5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-benzimidazolylcarbocyanine iodide), respectively. Major functional consequences of 7-OOH exposure were (1) loss of mitochondrial CYP27A1 activity, (2) reduced 27-hydroxycholesterol (27-OH) output, and (3) downregulation of cholesterol-exporting ABCA1 and ABCG1. Consistently, 7-OOH-challenged macrophages exported less cholesterol to apoA-I or high-density lipoprotein than did nonchallenged controls. StarD1-mediated 7-OOH transport was also found to be highly cytotoxic, whereas 7=O and 7-OH were minimally toxic. CONCLUSIONS: This study describes a previously unrecognized mechanism by which macrophage cholesterol efflux can be incapacitated under oxidative stress-linked disorders, such as chronic obesity and hypertension. Our findings provide new insights into the role of macrophage redox damage/dysfunction in atherogenesis.


Assuntos
Aterosclerose/metabolismo , Colesterol/análogos & derivados , Peroxidação de Lipídeos/fisiologia , Macrófagos/metabolismo , Estresse Oxidativo/fisiologia , Transporte Biológico , Células Cultivadas , Colesterol/metabolismo , CMP Cíclico/análogos & derivados , CMP Cíclico/farmacologia , Humanos , Macrófagos/citologia , Mitocôndrias/metabolismo , Transporte Proteico , Sensibilidade e Especificidade
7.
Protein Expr Purif ; 107: 35-42, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25461971

RESUMO

Scavenger receptor class B type I (SR-BI), the high density lipoprotein (HDL) receptor, is important for the delivery of HDL-cholesteryl esters to the liver for excretion via bile formation. The focus on therapeutic strategies aimed at reducing cholesterol levels highlights the critical need to understand the structural features of SR-BI that drive cholesterol removal. Yet, in the absence of a high-resolution structure of SR-BI, our understanding of how SR-BI interacts with HDL is limited. In this study, we have optimized the NMR solution conditions for the structural analysis of the C-terminal transmembrane domain of SR-BI that harbors putative domains required for receptor oligomerization. An isotopically-labeled SR-BI peptide encompassing residues 405-475 was bacterially-expressed and purified. [U-(15)N]-SR-BI(405-475) was incorporated into different detergent micelles and assessed by (1)H-(15)N-HSQC in order to determine which detergent micelle best maintained SR-BI(405-475) in a folded, native conformation for subsequent NMR analyses. We also determined the optimal detergent concentration used in micelles, as well as temperature, solution buffer and pH conditions. Based on (1)H-(15)N-HSQC peak dispersion, intensity, and uniformity, we determined that [U-(15)N]-SR-BI(405-475) should be incorporated into 5% detergent micelles consisting of 1-palmitoyl-2-hydroxy-sn-glycero-3-phospho-[1'-rac-glycerol] (LPPG) and data collected at 40°C in a non-buffered solution at pH 6.8. Furthermore, we demonstrate the ability of SR-BI(405-475) to form dimers upon chemical crosslinking. These studies represent the first steps in obtaining high-resolution structural information by NMR for the HDL receptor that plays a critical role in regulating whole body cholesterol removal.


Assuntos
Receptores Depuradores Classe B/química , Receptores Depuradores Classe B/isolamento & purificação , Animais , Detergentes/química , Dimerização , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Espectroscopia de Ressonância Magnética , Camundongos , Micelas , Estrutura Terciária de Proteína , Receptores Depuradores Classe B/genética , Receptores Depuradores Classe B/metabolismo
9.
J Immunol ; 189(1): 464-74, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22649199

RESUMO

Regulatory T cells (Tregs), in particular CD4(+) Foxp3(+) T cells, have been shown to play an important role in the maintenance of tolerance after allogeneic stem cell transplantation. In the current study, we have identified a population of CD8(+) Foxp3(+) T cells that are induced early during graft-versus-host disease (GVHD), constitute a significant percentage of the entire Treg population, and are present in all major GVHD target organs. These cells expressed many of the same cell surface molecules as found on CD4(+) Tregs and potently suppressed in vitro alloreactive T cell responses. Induction of these cells correlated positively with the degree of MHC disparity between donor and recipient and was significantly greater than that observed for CD4(+)-induced Tregs (iTregs) in nearly all tissue sites. Mice that lacked the ability to make both CD8(+) and CD4(+) iTregs had accelerated GVHD mortality compared with animals that were competent to make both iTreg populations. The absence of both iTreg populations was associated with significantly greater expansion of activated donor T cells and increased numbers of CD4(+) and CD8(+) T cells that secreted IFN-γ and IL-17. The presence of CD8(+) iTregs, however, was sufficient to prevent increased GVHD mortality in the complete absence of CD4(+) Tregs, indicating at least one functional iTreg population was sufficient to prevent an exacerbation in GVHD severity, and that CD8(+) iTregs could compensate for CD4(+) iTregs. These studies define a novel population of CD8(+) Tregs that play a role in mitigating the severity of GVHD after allogeneic stem cell transplantation.


Assuntos
Antígenos CD8/biossíntese , Diferenciação Celular/imunologia , Fatores de Transcrição Forkhead/biossíntese , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/terapia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Transplante de Medula Óssea/imunologia , Transplante de Medula Óssea/patologia , Diferenciação Celular/genética , Doença Enxerto-Hospedeiro/patologia , Tolerância Imunológica/genética , Teste de Cultura Mista de Linfócitos , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Transgênicos , Índice de Gravidade de Doença , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/patologia , Linfócitos T Reguladores/patologia
10.
Nat Commun ; 14(1): 2776, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37188660

RESUMO

Lipid nanoparticles have demonstrated utility in hepatic delivery of a range of therapeutic modalities and typically deliver their cargo via low-density lipoprotein receptor-mediated endocytosis. For patients lacking sufficient low-density lipoprotein receptor activity, such as those with homozygous familial hypercholesterolemia, an alternate strategy is needed. Here we show the use of structure-guided rational design in a series of mouse and non-human primate studies to optimize a GalNAc-Lipid nanoparticle that allows for low-density lipoprotein receptor independent delivery. In low-density lipoprotein receptor-deficient non-human primates administered a CRISPR base editing therapy targeting the ANGPTL3 gene, the introduction of an optimized GalNAc-based asialoglycoprotein receptor ligand to the nanoparticle surface increased liver editing from 5% to 61% with minimal editing in nontargeted tissues. Similar editing was noted in wild-type monkeys, with durable blood ANGPTL3 protein reduction up to 89% six months post dosing. These results suggest that GalNAc-Lipid nanoparticles may effectively deliver to both patients with intact low-density lipoprotein receptor activity as well as those afflicted by homozygous familial hypercholesterolemia.


Assuntos
Hipercolesterolemia Familiar Homozigota , Nanopartículas , Animais , Edição de Genes/métodos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Fígado/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Lipoproteínas LDL/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA