RESUMO
Esophageal cancer (EC) is one of the leading causes to cancer death in the worldwide and major population of EC is esophageal squamous cell carcinoma (ESCC). Still, ESCC-targeted therapy has not been covered yet. In the present study we have identified that Licochalcone B (Lico B) inhibited the ESCC growth by directly blocking the Janus kinase (JAK) 2 activity and its downstream signaling pathway. Lico B suppressed KYSE450 and KYSE510 ESCC cell growth, arrested cell cycle at G2/M phase and induced apoptosis. Direct target of Lico B was identified by kinase assay and verified with in vitro and ex vivo binding. Computational docking model predicted for Lico B interaction to ATP-binding pocket of JAK2. Furthermore, treatment of JAK2 clinical medicine AZD1480 to ESCC cells showed similar tendency with Lico B. Thus, JAK2 downstream signaling proteins phosphorylation of STAT3 at Y705 and S727 as well as STAT3 target protein Mcl-1 expression was decreased with treatment of Lico B. Our results suggest that Lico B inhibits ESCC cell growth, arrests cell cycle and induces apoptosis, revealing the underlying mechanism involved in JAK2/STAT3 signaling pathways after Lico B treatment. It might provide potential role of Lico B in the treatment of ESCC.
Assuntos
Chalconas/uso terapêutico , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Janus Quinase 2/antagonistas & inibidores , Apoptose , Linhagem Celular Tumoral , Chalconas/farmacologia , Carcinoma de Células Escamosas do Esôfago/patologia , HumanosRESUMO
Patients with non-small-cell lung cancer (NSCLC) containing epidermal growth factor receptor (EGFR) amplification or sensitive mutations initially respond to tyrosine kinase inhibitor gefitinib; however, the treatment is less effective over time. Gefitinib resistance mechanisms include MET gene amplification. A therapeutic strategy targeting MET as well as EGFR can overcome resistance to gefitinib. In the present study we identified Echinatin (Ecn), a characteristic chalcone in licorice, which inhibited both EGFR and MET and strongly altered NSCLC cell growth. The antitumor efficacy of Ecn against gefitinib-sensitive or -resistant NSCLC cells with EGFR mutations and MET amplification was confirmed by suppressing cell proliferation and anchorage-independent colony growth. During the targeting of EGFR and MET, Ecn significantly blocked the kinase activity, which was validated with competitive ATP binding. Inhibition of EGFR and MET by Ecn decreases the phosphorylation of downstream target proteins ERBB3, AKT and ERK compared with total protein expression or control. Ecn induced the G2/M cell cycle arrest, and apoptosis via the intrinsic pathway of caspase-dependent activation. Ecn induced ROS production and GRP78, CHOP, DR5 and DR4 expression as well as depolarized the mitochondria membrane potential. Therefore, our results suggest that Ecn is a promising therapeutic agent in NSCLC therapy.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Chalconas/farmacologia , Gefitinibe/farmacologia , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Chaperona BiP do Retículo Endoplasmático , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Glycyrrhiza/química , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Simulação de Acoplamento Molecular , Raízes de Plantas/química , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-met/genética , Quinazolinas/farmacologiaRESUMO
Global environmental pollution has led to human exposure to ultraviolet (UV) radiation due to the damaged ozone layer, thereby increasing the incidence and death rate of skin cancer including both melanoma and non-melanoma. Overexpression and activation of V-akt murine thymoma viral oncogene homolog (AKT, also known as protein kinase B) and related signaling pathways are major factors contributing to many cancers including lung cancer, esophageal squamous cell carcinoma and skin cancer. Although BRAF inhibitors are used to treat melanoma, further options are needed due to treatment resistance and poor efficacy. Depletion of AKT expression and activation, and related signaling cascades by its inhibitors, decreases the growth of skin cancer and metastasis. Here we have focused the effects of AKT and related signaling (PI3K/AKT/mTOR) pathways by regulators derived from plants and suggest the need for efficient treatment in skin cancer therapy.
Assuntos
Antineoplásicos/farmacologia , Melanoma/tratamento farmacológico , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Melanoma/metabolismo , Camundongos , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologiaRESUMO
Esophageal squamous cell carcinoma (ESCC), a major histologic type of esophageal cancer, is one of the frequent causes of cancer-related death worldwide. Picropodophyllotoxin (PPT) is the main component of Podophyllum hexandrum root with antitumor activity via apoptosis-mediated mechanisms in several cancer cells. However, the underlying mechanism of the PPT effects in apoptosis induction in cancer remains ambiguous. Hence, in this study, we evaluate the anti-cancer effects of PPT in apoptotic signaling pathway-related mechanisms in ESCC cells. First, to verify the effect of PPT on ESCC cell viability, we employed an MTT assay. PPT inhibited the viability of ESCC cells in time- and dose-dependent manners. PPT induced G2/M phase cell cycle arrest and annexin V-stained cell apoptosis through the activation of the c-Jun N-terminal kinase (JNK)/p38 pathways. Furthermore, the treatment of KYSE 30 and KYSE 450 ESCC cells with PPT induced apoptosis involving the regulation of endoplasmic reticulum stress- and apoptosis-related proteins by reactive oxygen species (ROS) generation, the loss of mitochondrial membrane potential, and multi-caspase activation. In conclusion, our results indicate that the apoptotic effect of PPT on ESCC cells has the potential to become a new anti-cancer drug by increasing ROS levels and inducing the JNK/p38 signaling pathways.
Assuntos
Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Podofilotoxina/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Humanos , Isomerismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Podofilotoxina/análogos & derivados , Podofilotoxina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismoRESUMO
Deoxypodophyllotoxin (DPT) derived from Anthriscus sylvestris (L.) Hoffm has attracted considerable interest in recent years because of its anti-inflammatory, antitumor, and antiviral activity. However, the mechanisms underlying DPT mediated antitumor activity have yet to be fully elucidated in esophageal squamous cell carcinoma (ESCC). We show here that DPT inhibited the kinase activity of epidermal growth factor receptor (EGFR) directly, as well as phosphorylation of its downstream signaling kinases, AKT, GSK-3ß, and ERK. We confirmed a direct interaction between DPT and EGFR by pull-down assay using DPT-beads. DPT treatment suppressed ESCC cell viability and colony formation in a time- and dose-dependent manner, as shown by MTT analysis and soft agar assay. DPT also down-regulated cyclin B1 and cdc2 expression to induce G2/M phase arrest of the cell cycle and upregulated p21 and p27 expression. DPT treatment of ESCC cells triggered the release of cytochrome c via loss of mitochondrial membrane potential, thereby inducing apoptosis by upregulation of related proteins. In addition, treatment of KYSE 30 and KYSE 450 cells with DPT increased endoplasmic reticulum stress, reactive oxygen species generation, and multi-caspase activation. Consequently, our results suggest that DPT has the potential to become a new anticancer therapeutic by inhibiting EGFR mediated AKT/ERK signaling pathway in ESCC.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Lignanas/farmacologia , Podofilotoxina/análogos & derivados , Apiaceae/química , Apoptose/genética , Caspases/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Podofilotoxina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismoRESUMO
Licochalcone (LC) families have been reported to have a wide range of biological function such as antioxidant, antibacterial, antiviral, and anticancer effects. Although various beneficial effects of LCD were revealed, its anticancer effect in human oral squamous cancer has not been identified. To examine the signaling pathway of LCD's anticancer effect, we determined whether LCD has physical interaction with Janus kinase (JAK2)/signal transducer and activator of transcription-3 (STAT3) signaling, which is critical in promoting cancer cell survival and proliferation. Our results demonstrated that LCD inhibited the kinase activity of JAK2, soft agar colony formation, and the proliferation of HN22 and HSC4 cells. LCD also induced mitochondrial apoptotic events such as altered mitochondrial membrane potential and reactive oxygen species production. LCD increased the expression of apoptosis-associated proteins in oral squamous cell carcinoma (OSCC) cells. Finally, the xenograft study showed that LCD significantly inhibited HN22 tumor growth. Immunohistochemical data supported that LCD suppressed p-JAK2 and p-STAT3 expression and induced cleaved-caspase-3 expression. These results indicate that the anticancer effect of LCD is due to the direct targeting of JAK2 kinase. Therefore, LCD can be used for therapeutic application against OSCC.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Chalconas/farmacologia , Janus Quinase 2/antagonistas & inibidores , Inibidores de Janus Quinases/farmacologia , Neoplasias Bucais/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Janus Quinase 2/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Terapia de Alvo Molecular , Neoplasias Bucais/enzimologia , Neoplasias Bucais/patologia , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço/enzimologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Citrus junos Seib ex TANAKA possesses various biological effects. It has been used in oriental remedies for blood circulation and the common cold. Recently, biological effects of C. junos peel have been reported. However, optimization of the biological properties of C. junos peel preparations has yet to be reported on. We developed a high-performance liquid chromatography (HPLC) method for quantification of the active constituents in C. junos peel. Hot water and ethanolic extracts of C. junos peel were prepared and their chemical profiles and biological activities were evaluated. The 80% ethanolic extract demonstrated the greatest antioxidant activity and phenolic content, while the 100% ethanolic extract had the greatest xanthine oxidase inhibitory activity. Elastase inhibition activity was superior in aqueous and 20% ethanolic extracts. The contents of two flavonoids were highest in the 100% ethanolic extract. We postulated that the antioxidant and anti-aging effects of C. junos peel extract could be attributed to phenolics such as flavonoids. Our results suggest that the flavonoid-rich extract of C. junos may be utilized for the treatment and prevention of metabolic disease and hyperuricemia while the water-soluble extract of C. junos could be used as a source for its anti-aging properties.
Assuntos
Antioxidantes/química , Citrus/química , Flavonoides/química , Fenóis/química , Antioxidantes/farmacologia , Cromatografia Líquida de Alta Pressão , Etanol/química , Flavonoides/farmacologia , Frutas/química , Humanos , Oxirredução/efeitos dos fármacos , Fenóis/farmacologia , Extratos Vegetais/químicaRESUMO
Esophageal squamous cell carcinoma (ESCC) is a poor prognostic cancer with a low five-year survival rate. Echinatin (Ech) is a retrochalone from licorice. It has been used as a herbal medicine due to its anti-inflammatory and anti-oxidative effects. However, its anticancer activity or underlying mechanism has not been elucidated yet. Thus, the objective of this study was to investigate the anti-tumor activity of Ech on ESCC by inducing ROS and ER stress dependent apoptosis. Ech inhibited ESCC cell growth in anchorage-dependent and independent analysis. Treatment with Ech induced G2/M phase of cell cycle and apoptosis of ESCC cells. It also regulated their related protein markers including p21, p27, cyclin B1, and cdc2. Ech also led to phosphorylation of JNK and p38. Regarding ROS and ER stress formation associated with apoptosis, we found that Ech increased ROS production, whereas its increase was diminished by NAC treatment. In addition, ER stress proteins were induced by treatment with Ech. Moreover, Ech enhanced MMP dysfunction and caspases activity. Furthermore, it regulated related biomarkers. Taken together, our results suggest that Ech can induce apoptosis in human ESCC cells via ROS/ER stress generation and p38 MAPK/JNK activation.
Assuntos
Apoptose/genética , Chalconas/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Neoplasias Esofágicas/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismoRESUMO
Oral cancer is of an aggressive malignancy that arises on oral cavity and lip, 90% of cancers histologically originated in the squamous cells. Licochalcone (LC)C has been known as natural phenolic chalconoid substances, and its origin is the root of Glycyrrhiza glabra or Glycyrrhiza inflata. LCC inhibited oral squamous cell carcinoma (OSCC) cell viability, mitochondrial function, and anchorage-independent growth in a dose-dependent manner. To investigate the ability of LCC to target Janus kinase 2 (JAK2), we performed pull-down binding assay, kinase assay, and docking simulation. The molecular docking studies were performed between JAK2 and the potent inhibitor LCC. It was shown that LCC tightly interacted with ATP-binding site of JAK2. In addition, LCC inhibited the JAK2/signal transducer and activator of transcription 3 pathway, upregulated p21, and downregulated Bcl-2, Mcl-1, and Survivin, while it disrupted mitochondrial membrane potential and subsequently caused cytochrome c release with activation of multi-caspase, eventually leading to apoptosis in HN22 and HSC4 cells. LCC elevated the protein levels of Bax, cleaved Bid and PARP, and increased Apaf-1, and this effect was reversed by LCC treatment. Our results demonstrated that treatment of OSCC cells with LCC induced the death receptor (DR)4 and DR5 expression level with the generation of reactive oxygen species and the upregulation of CHOP protein expression. Taken together, these results could provide the basis for clinical application as a new therapeutic strategy in the treatment of oral cancer.
Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Chalconas/farmacologia , Janus Quinase 2/genética , Neoplasias Bucais/tratamento farmacológico , Fator de Transcrição STAT3/genética , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Simulação de Acoplamento Molecular , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
Licochalcone A (LCA), isolated from the root of Glycyrrhiza inflata, are known to have medicinal effect such as anti-oxidant, anti-bacterial, anti-viral, and anti-cancer. Though, as a pharmacological mechanism regulator, anti-cancer studies on LCA were not investigated in human breast cancer. We investigated the anti-proliferative and apoptotic effect of LCA in human breast cancer cells MCF-7 and MDA-MB-231 through MTS assay, PI staining, Annexin-V/7-AAD assay, mitochondrial membrane potential assay, multi-caspase assay, RT-PCR, Western blot analysis, and anchorage-independent cell transformation assay. Our results showed the little difference between two cells, as MCF-7 cell is both estrogen/progesterone receptor positive, there were only effect on Sp1 protein level, but not in mRNA level. Adversely, estrogen/progesterone/human epidermal growth factor receptor 2 triple negative, MDA-MB-231 showed decreased Sp1 mRNA, and protein levels. To confirm the participation of Sp1 in breast cancer cell viability, siRNA techniques were introduced. Both cells showed dysfunction of mitochondrial membrane potential and mitochondrial ROS production, which reflects it passed intracellular mitochondrial apoptosis pathway. Additionally, LCA showed the anti-proliferative and apoptotic effect in breast cancer cells through regulating Sp1 and apoptosis-related proteins in a dose- and a time-dependent manner. Consequently, LCA might be a potential anti-breast cancer drug substitute. J. Cell. Biochem. 118: 4652-4663, 2017. © 2017 Wiley Periodicals, Inc.
Assuntos
Neoplasias da Mama/tratamento farmacológico , Chalconas/farmacologia , Proteínas de Neoplasias/metabolismo , Fator de Transcrição Sp1/metabolismo , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologiaRESUMO
Licochalcone B (Lico B), which is normally isolated from the roots of Glycyrrhiza inflata (Chinese Licorice), generally classified into organic compounds including retrochalcones. Potential pharmacological properties of Lico B include anti-inflammatory, anti-bacterial, anti-oxidant, and anti-cancer activities. However, its biological effects on melanoma and squamous cell carcinoma (SCC) are unknown. Based on these known facts, this study investigated the role of Lico B in apoptosis, through the extrinsic and intrinsic pathways and additional regulation of specificity protein 1 in human skin cancer cell lines. Annexin V/7-aminoactinomycin D staining, western blot analysis, mitochondrial membrane potential assay, and an anchorage-independent cell transformation assay demonstrated that Lico B treatment of human melanoma and SCC cells significantly inhibited cell proliferation and induced apoptotic cell death. More specifically, Lico B induced apoptosis through the regulation of specificity protein 1 and apoptosis-related proteins including CCAAT/enhancer-binding protein homologous protein, death receptors, and poly (ADP-ribose) polymerase. These results indicate that Lico B has apoptotic effect on A375 and A431 skin cancer cells, suggesting the potential value of Lico B for the treatment of human melanoma and SCC. Copyright © 2017 John Wiley & Sons, Ltd.
Assuntos
Apoptose/efeitos dos fármacos , Produtos Biológicos/química , Carcinoma de Células Escamosas/tratamento farmacológico , Chalconas/química , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Humanos , Melanoma/patologia , Neoplasias Cutâneas/patologia , Melanoma Maligno CutâneoRESUMO
Esculetin, a coumarin derivative, is a phenolic compound isolated from Artemisia capillaris, Citrus limonia, and Euphorbia lathyris. Although it has been reported to have anti-inflammatory, anti-oxidant, and anti-proliferative activities in several human cancers, its anti-proliferative activity against non-small-cell lung carcinoma (NSCLC) and the molecular mechanisms involved have not been adequately elucidated. In this study, we used two NSCLC cell lines (NCI-H358 and NCI-H1299) to investigate the anti-proliferative activity and apoptotic effect of esculetin. Our data showed that esculetin-treated cells exhibited reduced proliferation and apoptotic cell morphologies. Intriguingly, the transcription factor specificity protein 1 (Sp1) was significantly suppressed by esculetin in a dose- and time-dependent manner. Furthermore, the levels of p27 and p21, two key regulators of the cell cycle, were up-regulated by the esculetin-mediated down-regulation of Sp1; the level of a third cell-cycle regulator, survivin, was decreased, resulting in caspase-dependent apoptosis. Therefore, we conclude that esculetin could be a potent anti-proliferative agent in patients with NSCLC.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Fator de Transcrição Sp1/metabolismo , Umbeliferonas/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologiaRESUMO
Glycoprotein 90K (also known as LGALS3BP or Mac-2BP) is a tumor-associated protein, and high 90K levels are associated with poor prognosis in some cancers. To clarify the role of 90K as an indicator for poor prognosis and metastasis in epithelial cancers, the present study investigated the effect of 90K on an adherens junctional protein, E-cadherin, which is frequently absent or downregulated in human epithelial cancers. Treatment of certain cancer cells with 90K significantly reduced E-cadherin levels in a cell-population-dependent manner, and these cells showed decreases in cell adhesion and increases in invasive cell motility. Mechanistically, 90K-induced E-cadherin downregulation occurred via ubiquitination-mediated proteasomal degradation. 90K interacted with the E-cadherin-p120-catenin complex and induced its dissociation, altering the phosphorylation status of p120-catenin, whereas it did not associate with ß-catenin. In subconfluent cells, 90K decreased membrane-localized p120-catenin and the membrane fraction of the p120-catenin. Particularly, 90K-induced E-cadherin downregulation was diminished in p120-catenin knocked-down cells. Taken together, 90K upregulation promotes the dissociation of the E-cadherin-p120-catenin complex, leading to E-cadherin proteasomal degradation, and thereby destabilizing adherens junctions in less confluent tumor cells. Our results provide a potential mechanism to explain the poor prognosis of cancer patients with high serum 90K levels.
Assuntos
Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/metabolismo , Caderinas/metabolismo , Proteínas de Transporte/metabolismo , Cateninas/metabolismo , Glicoproteínas/metabolismo , Neoplasias/metabolismo , Antígenos CD , Células CACO-2 , Cateninas/genética , Adesão Celular , Contagem de Células , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Células MCF-7 , Masculino , Invasividade Neoplásica , Fosforilação , Prognóstico , Proteólise , delta CateninaRESUMO
Various source-derived mesenchymal stem cells (MSCs) with multipotent capabilities were considered for cell therapeutics of incurable diseases. The applicability of MSCs depends on the cellular source and on their different in vivo functions, despite having similar phenotypic and cytological characteristics. We characterized MSCs from different sources, including human bone marrow (BM), placenta (PL), and adipose tissue (AT), in terms of the phenotype, surface antigen expression, differentiation ability, proteome reference map, and blood flow recovery in a hindlimb ischemic disease model. The MSCs exhibit different differentiation potentials depending on the cellular source despite having similar phenotypic and surface antigen expression. We identified approximately 90 differentially regulated proteins. Most up- or down-regulated proteins show cytoskeletal or oxidative stress, peroxiredoxin, and apoptosis roles according to their functional involvement. In addition, the PL-MSCs retained a higher therapeutic efficacy than the BM- and AT-MSCs in the hindlimb ischemic disease model. In summary, we examined differentially expressed key regulatory factors for MSCs that were obtained from several cellular sources and demonstrated their differentially expressed proteome profiles. Our results indicate that primitive PL-MSCs have biological advantages relative to those from other sources, making PL-MSCs a useful model for clinical applications of cell therapy.
Assuntos
Tecido Adiposo/citologia , Células da Medula Óssea/citologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células-Tronco Mesenquimais/citologia , Placenta/citologia , Adipogenia , Animais , Western Blotting , Diferenciação Celular , Células Cultivadas , Condrogênese , Cromatografia Líquida , Eletroforese em Gel Bidimensional , Feminino , Membro Posterior/irrigação sanguínea , Humanos , Isquemia/terapia , Células-Tronco Mesenquimais/metabolismo , Camundongos Nus , Osteogênese , Gravidez , Proteoma/metabolismo , Proteômica/métodos , Espectrometria de Massas em TandemRESUMO
Esculetin, a coumarin compound, has anti-proliferative effects on various types of human cancer cells, but its effect on oral squamous cell carcinoma (OSCC) is unknown. In this study, we determined whether esculetin had anti-proliferative effects on two oral squamous cell lines, HN22, and HSC2. We found that esculetin inhibited cell viability by inducing apoptosis, as evinced by apoptotic cell morphologies, nuclear fragmentation, and the multi-caspase/MMP activity. Furthermore, proteomic analysis was used to identify the target-specific proteins involved in esculetin treatment. Intriguingly, apoptotic cell death by esculetin was associated with significant inhibition of the EGFR/PI3K/Akt signaling pathway. We also demonstrated that the expression of nucleophosmin (NPM) markedly decreased after esculetin treatment, and relocalization of NPM from the nucleous to the cytoplasm, together with p65, potentiated apoptotic stimulation. Additionally, our data indicated that NPM expression was markedly higher in OSCC tissues than in normal tissues. Our results collectively indicated that esculetin inhibited the proliferation of OSCC through EGFR-mediated signaling pathways and down-regulation of NPM as well as the perturbation of NPM trafficking from the nucleolus to the cytoplasm resulted in apoptosis.
Assuntos
Apoptose/efeitos dos fármacos , Receptores ErbB/metabolismo , Proteínas Nucleares/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Umbeliferonas/farmacologia , Idoso , Idoso de 80 Anos ou mais , Western Blotting , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Humanos , Imuno-Histoquímica , Masculino , Microscopia de Fluorescência , Pessoa de Meia-Idade , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Nucleofosmina , Transporte Proteico/efeitos dos fármacos , Proteômica/métodosRESUMO
In this study, we report that OVOL2, a C2H2 zinc finger protein, is a novel binding protein of ER71, which is a critical transcription factor for blood and vessel development. OVOL2 directly interacted with ER71, but not with ETS1 or ETS2, in the nucleus. ER71-mediated activation of the Flk1 promoter was further enhanced by OVOL2, although OVOL2 alone failed to activate it. Consistently, coexpression of ER71 and OVOL2 in differentiating embryonic stem cells led to a significant augmentation of FLK1(+), endothelial, and hematopoietic cells. Such cooperative effects were impaired by the short hairpin RNA-mediated inhibition of Ovol2. Collectively, we show that ER71 directly interacts with OVOL2 and that such interaction is critical for FLK1(+) cell generation and their differentiation into downstream cell lineages.
Assuntos
Células-Tronco Embrionárias/metabolismo , Células Endoteliais/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Fatores de Transcrição/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Linhagem da Célula/fisiologia , Células Cultivadas , Células-Tronco Embrionárias/citologia , Células Endoteliais/citologia , Técnicas de Silenciamento de Genes , Células-Tronco Hematopoéticas/citologia , Camundongos , Proteômica , RNA Interferente Pequeno/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genéticaRESUMO
Adipose tissue in the loin muscle area of beef cattle as a marbling factor is directly associated with beef quality. To elucidate whether properties of proteins involved in depot specific adipose tissue were sex-dependent, we analyzed protein expression of intramuscular adipose tissue (IMAT) and omental adipose tissue (OMAT) from Hanwoo cows, steers, and bulls of Korean native beef cattle by liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomic analysis, quantitative polymerase chain reaction (PCR) and western blot analysis. Two different adipose depots (i.e. intramuscular and omental) were collected from cows (n = 7), steers (n = 7), or bulls (n = 7). LC-MS/MS revealed a total of 55 and 35 proteins in IMAT and OMAT, respectively. Of the 55 proteins identified, 44, 40, and 42 proteins were confirmed to be differentially expressed in IMAT of cows, steers, and bulls, respectively. In OMAT of cows, steers, and bulls, 33, 33, and 22 were confirmed to be differentially expressed, respectively. Tropomyosin (TPM) 1, TPM 2, and TPM3 were subjected to verification by quantitative PCR and western blot analysis in IMAT and OMAT of Hanwoo cows, steers, and bulls as key factors closely associated with muscle development. Both mRNA levels and protein levels of TPM1, TPM2, and TPM3 in IMAT were lower in bulls compared to in cows or steers suggesting that they were positively correlated with marbling score and quality grade. Our results may aid the regulation of marbling development and improvement of meat quality grades in beef cattle.
RESUMO
Meat quality is a complex trait influenced by many factors, including genetics, nutrition, feeding environment, animal handling, and their interactions. To elucidate relevant factors affecting pork quality associated with oxidative stress and muscle development, we analyzed protein expression in high quality longissimus dorsi muscles (HQLD) and low quality longissimus dorsi muscles (LQLD) from Duroc pigs by liquid chromatographytandem mass spectrometry (LC-MS/MS)-based proteomic analysis. Between HQLD (n = 20) and LQLD (n = 20) Duroc pigs, 24 differentially expressed proteins were identified by LC-MS/MS. A total of 10 and 14 proteins were highly expressed in HQLD and LQLD, respectively. The 24 proteins have putative functions in the following seven categories: catalytic activity (31%), ATPase activity (19%), oxidoreductase activity (13%), cytoskeletal protein binding (13%), actin binding (12%), calcium ion binding (6%), and structural constituent of muscle (6%). Silver-stained image analysis revealed significant differential expression of lactate dehydrogenase A (LDHA) between HQLD and LQLD Duroc pigs. LDHA was subjected to in vitro study of myogenesis under oxidative stress conditions and LDH activity assay to verification its role in oxidative stress. No significant difference of mRNA expression level of LDHA was found between normal and oxidative stress condition. However, LDH activity was significantly higher under oxidative stress condition than at normal condition using in vitro model of myogenesis. The highly expressed LDHA was positively correlated with LQLD. Moreover, LDHA activity increased by oxidative stress was reduced by antioxidant resveratrol. This paper emphasizes the importance of differential expression patterns of proteins and their interaction for the development of meat quality traits. Our proteome data provides valuable information on important factors which might aid in the regulation of muscle development and the improvement of meat quality in longissimus dorsi muscles of Duroc pigs under oxidative stress conditions.
RESUMO
Redox balance has been suggested as an important determinant of "stemness" in embryonic stem cells (ESCs). In this study, we demonstrate that peroxiredoxin (Prx) plays a pivotal role in maintenance of ESC stemness during neurogenesis through suppression of reactive oxygen species (ROS)-sensitive signaling. During neurogenesis, Prx I and Oct4 are expressed in a mutually dependent manner and their expression is abruptly downregulated by an excess of ROS. Thus, in Prx I(-/-) or Prx II(-/-) ESCs, rapid loss of stemness can occur due to spontaneous ROS overload, leading to their active commitment into neurons; however, stemness is restored by the addition of an antioxidant or an inhibitor of c-Jun N-terminal kinase (JNK). In addition, Prx I and Prx II appear to have a tight association with the mechanism underlying the protection of ESC stemness in developing teratomas. These results suggest that Prx functions as a protector of ESC stemness by opposing ROS/JNK cascades during neurogenesis. Therefore, our findings have important implications for understanding of maintenance of ESC stemness through involvement of antioxidant enzymes and may lead to development of an alternative stem cell-based therapeutic strategy for production of high-quality neurons in large quantity.
Assuntos
Células-Tronco Embrionárias/enzimologia , MAP Quinase Quinase 4/metabolismo , Neurogênese/fisiologia , Peroxirredoxinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Células-Tronco Embrionárias/citologia , MAP Quinase Quinase 4/genética , Camundongos , Camundongos Knockout , Peroxirredoxinas/genéticaRESUMO
Lung cancer is the leading cause of cancer-related death worldwide, and non-small cell lung cancer (NSCLC) is the most common pathological type with a reported frequency of about 85% of all cases. Despite recent advances in therapeutic agents and targeted therapies, the prognosis for NSCLC remains poor, and therefore it is important to identify the biological targets of this complex disease since a blockade of such targets would affect multiple downstream signaling cascades. ß-Lapachone (ß-Lap) is an antiproliferative agent that selectively induces apoptosis-related cell death in a variety of human cancer cells. However, the mechanisms of its action require further investigation. In this study, we show that treatment with ß-lap triggers apoptosis and cell-cycle arrest in two NSCLC cell lines: H1299 and NCI-H358. The transcription factor specificity protein 1 (Sp1) was markedly inhibited by ß-lap in a dose- and time-dependent manner. Furthermore, ß-lap modulated the protein expression levels of the Sp1 regulatory genes, including cell-cycle regulatory proteins and antiapoptotic proteins, resulting in apoptosis. Taken together, our results indicate that ß-lap may be a potential antiproliferative agent candidate by inducing apoptotic cell death in NSCLC tissue through downregulation of Sp1.