Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(7)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35408998

RESUMO

TRPC6, the sixth member of the family of canonical transient receptor potential (TRP) channels, contributes to a variety of physiological processes and human pathologies. This study extends the knowledge on the newly developed TRPC6 blocker SH045 with respect to its main target organs beyond the description of plasma kinetics. According to the plasma concentration-time course in mice, SH045 is measurable up to 24 h after administration of 20 mg/kg BW (i.v.) and up to 6 h orally. The short plasma half-life and rather low oral bioavailability are contrasted by its reported high potency. Dosage limits were not worked out, but absence of safety concerns for 20 mg/kg BW supports further dose exploration. The disposition of SH045 is described. In particular, a high extravascular distribution, most prominent in lung, and a considerable renal elimination of SH045 were observed. SH045 is a substrate of CYP3A4 and CYP2A6. Hydroxylated and glucuronidated metabolites were identified under optimized LC-MS/MS conditions. The results guide a reasonable selection of dose and application route of SH045 for target-directed preclinical studies in vivo with one of the rare high potent and subtype-selective TRPC6 inhibitors available.


Assuntos
Espectrometria de Massas em Tandem , Animais , Disponibilidade Biológica , Cromatografia Líquida , Camundongos , Canal de Cátion TRPC6
2.
Sci Rep ; 12(1): 3038, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35194063

RESUMO

Transient receptor potential channel subfamily C, member 6 (TRPC6), a non-selective cation channel that controls influx of Ca2+ and other monovalent cations into cells, is widely expressed in the kidney. TRPC6 gene variations have been linked to chronic kidney disease but its role in acute kidney injury (AKI) is unknown. Here we aimed to investigate the putative role of TRPC6 channels in AKI. We used Trpc6-/- mice and pharmacological blockade (SH045 and BI-749327), to evaluate short-term AKI outcomes. Here, we demonstrate that neither Trpc6 deficiency nor pharmacological inhibition of TRPC6 influences the short-term outcomes of AKI. Serum markers, renal expression of epithelial damage markers, tubular injury, and renal inflammatory response assessed by the histological analysis were similar in wild-type mice compared to Trpc6-/- mice as well as in vehicle-treated versus SH045- or BI-749327-treated mice. In addition, we also found no effect of TRPC6 modulation on renal arterial myogenic tone by using blockers to perfuse isolated kidneys. Therefore, we conclude that TRPC6 does not play a role in the acute phase of AKI. Our results may have clinical implications for safety and health of humans with TRPC6 gene variations, with respect to mutated TRPC6 channels in the response of the kidney to acute ischemic stimuli.


Assuntos
Injúria Renal Aguda/genética , Variação Genética , Isquemia/genética , Rim/irrigação sanguínea , Resultados Negativos , Canal de Cátion TRPC6/genética , Canal de Cátion TRPC6/fisiologia , APACHE , Injúria Renal Aguda/patologia , Animais , Cálcio/metabolismo , Isquemia/patologia , Rim/metabolismo , Camundongos Transgênicos
3.
Pharmaceuticals (Basel) ; 14(3)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805686

RESUMO

TRPC6 (transient receptor potential cation channels; canonical subfamily C, member 6) is widespread localized in mammalian tissues like kidney and lung and associated with progressive proteinuria and pathophysiological pulmonary alterations, e.g., reperfusion edema or lung fibrosis. However, the understanding of TRPC6 channelopathies is still at the beginning stages. Recently, by chemical diversification of (+)-larixol originating from Larix decidua resin traditionally used for inhalation, its methylcarbamate congener, named SH045, was obtained and identified in functional assays as a highly potent, subtype-selective inhibitor of TRPC6. To pave the way for use of SH045 in animal disease models, this study aimed at developing a capable bioanalytical method and to provide exploratory pharmacokinetic data for this promising derivative. According to international guidelines, a robust and selective LC-MS/MS method based on MRM detection in positive ion mode was established and validated for quantification of SH045 in mice plasma, whereby linearity and accuracy were demonstrated for the range of 2-1600 ng/mL. Applying this method, the plasma concentration time course of SH045 following single intraperitoneal administration (20 mg/kg body weight) revealed a short half-life of 1.3 h. However, the pharmacological profile of SH045 is promising, as five hours after administration, plasma levels still remained sufficiently higher than published low nanomolar IC50 values. Summarizing, the LC-MS/MS method and exploratory pharmacokinetic data provide essential prerequisites for experimental pharmacological TRPC6 modulation and translational treatment of TRPC6 channelopathies.

4.
Zhen Ci Yan Jiu ; 43(12): 747-53, 2018 Dec 25.
Artigo em Zh | MEDLINE | ID: mdl-30585450

RESUMO

Immunity reaction has been regarded as a key step for clinical acupuncture and moxibustion treatment. In the present paper, we review current situations about studies on acupuncture-moxibustion induced immunoregulation from 1) related project fundings of National Natural Science Foundation (NCFS) of China from 1989-2017; 2) papers published in SCI and Chinese medical journals from 2010-2018; 3) clinical conditions or disorders treated by acupuncture and moxibustion and their clinical therapeutic effects; 4) the commonly used acupoints for studying immune regulation functions; 5) some mechanisms of innate immunity and adaptive immunity involved; and 6) immune adjustment pathways involved. Moreover, in our future studies, we suggest to pay more attention to 1) the detailed cellular molecular mechanisms; 2) interactions among the immune cells, the immune cells and non-immune cells and cytokines responsible for regulation effects of acupuncture-moxibustion; 3) interrelationship of different systems as skin-brain axis, brain-intestinal axis, nerve-blood vessel unit of brain tissues, etc. involving acupuncture-moxibustion induced immunoregulation by using new techniques as proteomics, genomics, two-photon imaging technology, tracer technique, cryo-electronic microscope technology, etc.


Assuntos
Terapia por Acupuntura , Moxibustão , China , Sistema Imunitário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA