Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 285(40): 30558-66, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20659901

RESUMO

Bacterial acyl carrier protein (ACP) is a highly anionic, 9 kDa protein that functions as a cofactor protein in fatty acid biosynthesis. Escherichia coli ACP is folded at neutral pH and in the absence of divalent cations, while Vibrio harveyi ACP, which is very similar at 86% sequence identity, is unfolded under the same conditions. V. harveyi ACP adopts a folded conformation upon the addition of divalent cations such as Ca(2+) and Mg(2+) and a mutant, A75H, was previously identified that restores the folded conformation at pH 7 in the absence of divalent cations. In this study we sought to understand the unique folding behavior of V. harveyi ACP using NMR spectroscopy and biophysical methods. The NMR solution structure of V. harveyi ACP A75H displays the canonical ACP structure with four helices surrounding a hydrophobic core, with a narrow pocket closed off from the solvent to house the acyl chain. His-75, which is charged at neutral pH, participates in a stacking interaction with Tyr-71 in the far C-terminal end of helix IV. pH titrations and the electrostatic profile of ACP suggest that V. harveyi ACP is destabilized by anionic charge repulsion around helix II that can be partially neutralized by His-75 and is further reduced by divalent cation binding. This is supported by differential scanning calorimetry data which indicate that calcium binding further increases the melting temperature of V. harveyi ACP A75H by ∼20 °C. Divalent cation binding does not alter ACP dynamics on the ps-ns timescale as determined by (15)N NMR relaxation experiments, however, it clearly stabilizes the protein fold as observed by hydrogen-deuterium exchange studies. Finally, we demonstrate that the E. coli ACP H75A mutant is similarly unfolded as wild-type V. harveyi ACP, further stressing the importance of this particular residue for proper protein folding.


Assuntos
Proteína de Transporte de Acila/química , Proteínas de Bactérias/química , Cálcio/química , Magnésio/química , Mutação de Sentido Incorreto , Dobramento de Proteína , Vibrio/química , Proteína de Transporte de Acila/genética , Proteína de Transporte de Acila/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cálcio/metabolismo , Cátions Bivalentes/química , Medição da Troca de Deutério , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Magnésio/metabolismo , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Vibrio/genética , Vibrio/metabolismo
2.
Biochim Biophys Acta ; 1798(6): 1062-72, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20004172

RESUMO

Recent reports which show that several chemokines can act as direct microbicidal agents have drawn renewed attention to these chemotactic signalling proteins. Here we present a structure-function analysis of peptides derived from the human chemokines macrophage inflammatory protein-3alpha (MIP-3alpha/CCL20), interleukin-8 (IL-8), neutrophil activating protein-2 (NAP-2) and thrombocidin-1 (TC-1). These peptides encompass the C-terminal alpha-helices of these chemokines, which have been suggested to be important for the direct antimicrobial activities. Far-UV CD spectroscopy showed that the peptides are unstructured in aqueous solution and that a membrane mimetic solvent is required to induce a helical secondary structure. A co-solvent mixture was used to determine solution structures of the peptides by two-dimensional (1)H-NMR spectroscopy. The highly cationic peptide, MIP-3alpha(51-70), had the most pronounced antimicrobial activity and displayed an amphipathic structure. A shorter version of this peptide, MIP-3alpha(59-70), remained antimicrobial but its structure and mechanism of action were unlike that of the former peptide. The NAP-2 and TC-1 proteins differ in their sequences only by the deletion of two C-terminal residues in TC-1, but intact TC-1 is a very potent antimicrobial while NAP-2 is inactive. The corresponding C-terminal peptides, NAP-2(50-70) and TC-1(50-68), had very limited and no bactericidal activity, respectively. This suggests that other regions of TC-1 contribute to its bactericidal activity. Altogether, this work provides a rational structural basis for the biological activities of these peptides and proteins and highlights the importance of experimental characterization of peptide fragments as distinct entities because their activities and structural properties may differ substantially from their parent proteins.


Assuntos
Antibacterianos/química , Quimiocinas/química , Peptídeos/química , Antibacterianos/farmacologia , Bacillus subtilis/crescimento & desenvolvimento , Quimiocinas/farmacologia , Escherichia coli/crescimento & desenvolvimento , Humanos , Peptídeos/farmacologia , Estrutura Secundária de Proteína , Staphylococcus aureus/crescimento & desenvolvimento , Relação Estrutura-Atividade
3.
Antimicrob Agents Chemother ; 55(5): 2074-83, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21321145

RESUMO

The platelet chemokines neutrophil-activating peptide-2 (NAP-2) and thrombocidin-1 (TC-1) differ by only two amino acids at their carboxy-terminal ends. Nevertheless, they display a significant difference in their direct antimicrobial activities, with the longer NAP-2 being inactive and TC-1 being active. In an attempt to rationalize this difference in activity, we studied the structure and the dynamics of both proteins by nuclear magnetic resonance (NMR) spectroscopy. Using 15N isotope-labeled protein, we confirmed that the two monomeric proteins essentially have the same overall structure in aqueous solution. However, NMR relaxation measurements provided evidence that the negatively charged carboxy-terminal residues of NAP-2 experience a restricted motion, whereas the carboxy-terminal end of TC-1 moves in an unrestricted manner. The same behavior was also seen in molecular dynamic simulations of both proteins. Detailed analysis of the protein motions through model-free analysis, as well as a determination of their overall correlation times, provided evidence for the existence of a monomer-dimer equilibrium in solution, which seemed to be more prevalent for TC-1. This finding was supported by diffusion NMR experiments. Dimerization generates a larger cationic surface area that would increase the antimicrobial activities of these chemokines. Moreover, these data also show that the negatively charged carboxy-terminal end of NAP-2 (which is absent in TC-1) folds back over part of the positively charged helical region of the protein and, in doing so, interferes with the direct antimicrobial activity.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Proteínas de Neoplasias/química , Peptídeos/química , beta-Tromboglobulina/química , Anti-Infecciosos , Simulação de Dinâmica Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , beta-Tromboglobulina/genética , beta-Tromboglobulina/metabolismo
4.
Biochem J ; 430(1): 1-19, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20662770

RESUMO

FA (fatty acid) synthesis represents a central, conserved process by which acyl chains are produced for utilization in a number of end-products such as biological membranes. Central to FA synthesis, the ACP (acyl carrier protein) represents the cofactor protein that covalently binds all fatty acyl intermediates via a phosphopantetheine linker during the synthesis process. FASs (FA synthases) can be divided into two classes, type I and II, which are primarily present in eukaryotes and bacteria/plants respectively. They are characterized by being composed of either large multifunctional polypeptides in the case of type I or consisting of discretely expressed mono-functional proteins in the type II system. Owing to this difference in architecture, the FAS system has been thought to be a good target for the discovery of novel antibacterial agents, as exemplified by the antituberculosis drug isoniazid. There have been considerable advances in this field in recent years, including the first high-resolution structural insights into the type I mega-synthases and their dynamic behaviour. Furthermore, the structural and dynamic properties of an increasing number of acyl-ACPs have been described, leading to an improved comprehension of this central carrier protein. In the present review we discuss the state of the understanding of FA synthesis with a focus on ACP. In particular, developments made over the past few years are highlighted.


Assuntos
Proteína de Transporte de Acila/fisiologia , Ácidos Graxos/biossíntese , Proteína de Transporte de Acila/química , Proteína de Transporte de Acila/genética , Animais , Antibacterianos/farmacologia , Bactérias/metabolismo , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/fisiologia , Ácidos Graxos/genética , Retroalimentação Fisiológica , Humanos , Conformação Proteica , Transcrição Gênica
5.
Biochemistry ; 49(13): 2860-8, 2010 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-20180600

RESUMO

Acyl carrier protein (ACP) is the central player in fatty acid (FA) biosynthesis. It covalently binds all FA intermediates and presents them to the enzymes needed for elongation. Bacterial ACP must interact with a large number of proteins, which raises the question of how different acyl-ACPs are recognized and distinguished from each other. We performed molecular dynamics (MD) simulations of the FA synthase intermediates beta-ketoacyl-, beta-hydroxyacyl, and trans-2-enoyl-ACP spanning from 4 to 18 carbon groups in length. These forms of acyl-ACP have largely yet to be characterized experimentally, and our simulations provide a first insight into these structures. The simulations were conducted with the acyl chain directed into the solvent, as well as in a solvent-protected conformation inside the hydrophobic pocket of Escherichia coli ACP. Spontaneous migration from the solvent-exposed state into the hydrophobic binding pocket of ACP was seen in each of the intermediate classes studied, but not in all the individual simulations. This confirms that the intermediates can enter and utilize the same hydrophobic pockets as saturated acyl chains. In addition, a recurring, novel association of the acyl chains with loop I of ACP was observed that may be occupied transiently before entry into the hydrophobic pocket. The MD simulations of the acyl chains in a solvent-shielded state reveal that the polar functional group in the beta position of the beta-ketoacyl and beta-hydroxyacyl chains anchors these moieties at the cavity entrance, while the chains without a polar group in the beta position lack this additional anchoring atom. This leads to a binding mode in which the beta-ketoacyl and beta-hydroxyacyl chains are positioned further from the bottom of the pocket compared to the saturated and enoyl chains, particularly in short chain (

Assuntos
Proteína de Transporte de Acila/química , Proteínas de Escherichia coli/química , Simulação de Dinâmica Molecular , Simulação por Computador , Ácido Graxo Sintases/metabolismo , Ácidos Graxos/análise , Ácidos Graxos/biossíntese , Conformação Proteica , Solventes
6.
Biochim Biophys Acta ; 1758(9): 1184-202, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16756942

RESUMO

Antimicrobial peptides encompass a number of different classes, including those that are rich in a particular amino acid. An important subset are peptides rich in Arg and Trp residues, such as indolicidin and tritrpticin, that have broad and potent antimicrobial activity. The importance of these two amino acids for antimicrobial activity was highlighted through the screening of a complete combinatorial library of hexapeptides. These residues possess some crucial chemical properties that make them suitable components of antimicrobial peptides. Trp has a distinct preference for the interfacial region of lipid bilayers, while Arg residues endow the peptides with cationic charges and hydrogen bonding properties necessary for interaction with the abundant anionic components of bacterial membranes. In combination, these two residues are capable of participating in cation-pi interactions, thereby facilitating enhanced peptide-membrane interactions. Trp sidechains are also implicated in peptide and protein folding in aqueous solution, where they contribute by maintaining native and nonnative hydrophobic contacts. This has been observed for the antimicrobial peptide from human lactoferrin, possibly restraining the peptide structure in a suitable conformation to interact with the bacterial membrane. These unique properties make the Arg- and Trp-rich antimicrobial peptides highly active even at very short peptide lengths. Moreover, they lead to structures for membrane-mimetic bound peptides that go far beyond regular alpha-helices and beta-sheet structures. In this review, the structures of a number of different Trp- and Arg-rich antimicrobial peptides are examined and some of the major mechanistic studies are presented.


Assuntos
Anti-Infecciosos/química , Arginina/química , Peptídeos/química , Triptofano/química , Sequência de Aminoácidos , Anti-Infecciosos/farmacologia , Arginina/farmacologia , Testes de Sensibilidade Microbiana , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/farmacologia , Especificidade da Espécie , Triptofano/farmacologia
8.
J Biol Chem ; 283(48): 33620-9, 2008 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-18809688

RESUMO

Acyl carrier protein (ACP) is an essential co-factor protein in fatty acid biosynthesis that shuttles covalently bound fatty acyl intermediates in its hydrophobic pocket to various enzyme partners. To characterize acyl chain-ACP interactions and their influence on enzyme interactions, we performed 19 molecular dynamics (MD) simulations of Escherichia coli apo-, holo-, and acyl-ACPs. The simulations were started with the acyl chain in either a solvent-exposed or a buried conformation. All four short-chain (< or = C10) and one long-chain (C16) unbiased acyl-ACP MD simulation show the transition of the solvent-exposed acyl chain into the hydrophobic pocket of ACP, revealing its pathway of acyl chain binding. Although the acyl chain resides inside the pocket, Thr-39 and Glu-60 at the entrance stabilize the phosphopantetheine linker through hydrogen bonding. Comparisons of the different ACP forms indicate that the loop region between helices II and III and the prosthetic linker may aid in substrate recognition by enzymes of fatty acid synthase systems. The MD simulations consistently show that the hydrophobic binding pocket of ACP is best suited to accommodate an octanoyl group and is capable of adjusting in size to accommodate chain lengths as long as decanoic acid. The simulations also reveal a second, novel binding mode of the acyl chains inside the hydrophobic binding pocket directed toward helix I. This study provides a detailed dynamic picture of acyl-ACPs that is in excellent agreement with available experimental data and, thereby, provides a new understanding of enzyme-ACP interactions.


Assuntos
Proteína de Transporte de Acila/química , Simulação por Computador , Proteínas de Escherichia coli/química , Escherichia coli/química , Ácidos Graxos/química , Modelos Moleculares , Proteína de Transporte de Acila/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Ácidos Graxos/metabolismo , Estrutura Terciária de Proteína/fisiologia
9.
Antimicrob Agents Chemother ; 52(3): 883-94, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18086840

RESUMO

Human macrophage inflammatory protein 3alpha (MIP-3alpha), also known as CCL20, is a 70-amino-acid chemokine which exclusively binds to chemokine receptor 6. In addition, the protein also has direct antimicrobial, antifungal, and antiviral activities. The solution structure of MIP-3alpha was solved by the use of two-dimensional homonuclear proton nuclear magnetic resonance (NMR). The structure reveals the characteristic chemokine fold, with three antiparallel beta strands followed by a C-terminal alpha helix. In contrast to the crystal structures of MIP-3alpha, the solution structure was found to be monomeric. Another difference between the NMR and crystal structures lies in the angle of the alpha helix with respect to the beta strands, which measure 69 and approximately 56.5 degrees in the two structures, respectively. NMR diffusion and pH titration studies revealed a distinct tendency for MIP-3alpha to form dimers at neutral pH and monomers at lower pH, dependent on the protonation state of His40. Molecular dynamics simulations of both the monomeric and the dimeric forms of MIP-3alpha supported the notion that the chemokine undergoes a change in helix angle upon dimerization and also highlighted the important hydrophobic and hydrogen bonding contacts made by His40 in the dimer interface. Moreover, a constrained N terminus and a smaller binding groove were observed in dimeric MIP-3alpha simulations, which could explain why monomeric MIP-3alpha may be more adept at receptor binding and activation. The solution structure of a synthetic peptide consisting of the last 20 residues of MIP-3alpha displayed a highly amphipathic alpha helix, reminiscent of various antimicrobial peptides. Antimicrobial assays with this peptide revealed strong and moderate bactericidal activities against Escherichia coli and Staphylococcus aureus, respectively. This confirms that the C-terminal alpha-helical region of MIP-3alpha plays a significant part in its broad anti-infective activity.


Assuntos
Quimiocina CCL20 , Espectroscopia de Ressonância Magnética/métodos , Quimiocina CCL20/química , Quimiocina CCL20/metabolismo , Quimiocina CCL20/farmacologia , Cristalização , Dimerização , Escherichia coli/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Dados de Sequência Molecular , Dobramento de Proteína , Prótons , Soluções/química , Soluções/metabolismo , Soluções/farmacologia , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA