Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 19(2): e1010649, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36809369

RESUMO

Circadian clock and chromatin-remodeling complexes are tightly intertwined systems that regulate rhythmic gene expression. The circadian clock promotes rhythmic expression, timely recruitment, and/or activation of chromatin remodelers, while chromatin remodelers regulate accessibility of clock transcription factors to the DNA to influence expression of clock genes. We previously reported that the BRAHMA (BRM) chromatin-remodeling complex promotes the repression of circadian gene expression in Drosophila. In this study, we investigated the mechanisms by which the circadian clock feeds back to modulate daily BRM activity. Using chromatin immunoprecipitation, we observed rhythmic BRM binding to clock gene promoters despite constitutive BRM protein expression, suggesting that factors other than protein abundance are responsible for rhythmic BRM occupancy at clock-controlled loci. Since we previously reported that BRM interacts with two key clock proteins, CLOCK (CLK) and TIMELESS (TIM), we examined their effect on BRM occupancy to the period (per) promoter. We observed reduced BRM binding to the DNA in clk null flies, suggesting that CLK is involved in enhancing BRM occupancy to initiate transcriptional repression at the conclusion of the activation phase. Additionally, we observed reduced BRM binding to the per promoter in flies overexpressing TIM, suggesting that TIM promotes BRM removal from DNA. These conclusions are further supported by elevated BRM binding to the per promoter in flies subjected to constant light and experiments in Drosophila tissue culture in which the levels of CLK and TIM are manipulated. In summary, this study provides new insights into the reciprocal regulation between the circadian clock and the BRM chromatin-remodeling complex.


Assuntos
Proteínas de Drosophila , Regulação da Expressão Gênica , Animais , Cromatina , Ritmo Circadiano/genética , Proteínas CLOCK/genética , Drosophila/genética , Proteínas de Drosophila/genética
2.
J Biomech ; 73: 33-39, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29599042

RESUMO

Slower trunk muscle responses are linked to back pain and injury. Unfortunately, clinical assessments of spine function do not objectively evaluate this important attribute, which reflects speed of trunk control. Speed of trunk control can be parsed into two components: (1) delay, the time it takes to initiate a movement, and (2) lag, the time it takes to execute a movement once initiated. The goal of this study is to demonstrate a new approach to assess delay and lag in trunk control using a simple tracking task. Ten healthy subjects performed four blocks of six trials of trunk tracking in the sagittal plane. Delay and lag were estimated by modeling trunk control for predictable and unpredictable (control mode) trunk movements in flexion and extension (control direction) at movement amplitudes of 2°, 4°, and 6° (control amplitude). The main effect of control mode, direction, and amplitude of movement were compared between trial blocks to assess secondary influencers (e.g., fatigue). Only control mode was consistent across trial blocks with predictable movements being faster than unpredictable for both delay and lag. Control direction and amplitude effects on delay and lag were consistent across the first two trial blocks and less consistent in later blocks. Given the heterogeneity in the presentation of back pain, clinical assessment of trunk control should include different control modes, directions, and amplitudes. To reduce testing time and the influence of fatigue, we recommend six trials to assess trunk control.


Assuntos
Movimento/fisiologia , Tronco , Adulto , Dor nas Costas/fisiopatologia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/fisiologia , Músculo Esquelético/fisiopatologia , Coluna Vertebral/fisiologia , Coluna Vertebral/fisiopatologia , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA