Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Geriatr Psychiatry ; 29(4): 319-332, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33423870

RESUMO

OBJECTIVE: Since apathy increases in prevalence with severity of dementia pathology, we sought to distinguish concomitant neurodegenerative processes from brain differences associated with apathy in persons with mild cognitive impairment (MCI) and Alzheimer's Disease (AD). We examined relative structural brain differences between case-control matched cognitively impaired patients with and without apathy. DESIGN: Cross-sectional case-control study. SETTING: Fifty-eight clinical sites in phase 2 of the AD Neuroimaging Initiative across the United States and Canada. PARTICIPANTS: The ≥ 55 years of age with MCI or AD dementia and no major neurological disorders aside from suspected incipient AD dementia. Participants with apathy (n=69) were age-, sex-, apolipoprotein E ε4 allele carrier status-, Mini-Mental State Exam score-, and MCI or AD dementia diagnosis-matched to participants without apathy (n=149). INTERVENTIONS: The 3-tesla T1-weighted MRI scan and neurocognitive assessments. Using the Neuropsychiatric Inventory apathy domain scores, participants were dichotomized into a with-apathy group (score ≥ 1) and a without-apathy group (score = 0). MEASUREMENTS: Cortical thicknesses from 24 a priori regions of interest involved in frontostriatal circuits and frontotemporal association areas. RESULTS: False-discovery rate adjusted within-group comparisons between participants with apathy and participants without apathy showed thinner right medial orbitofrontal (mOFC; meandifference(MD)±standarderrorofMD(SE)=-0.0879±0.0257mm; standardizedMD(d)=-0.4456) and left rostral anterior cingulate (rACC; MD±SE=-0.0905±0.0325mm; d=-0.3574) cortices and thicker left middle temporal cortices (MTC; MD±SE=0.0688±0.0239mm; d=0.3311) in those with apathy. CONCLUSION: Atrophy of the right mOFC and left rACC and sparing of atrophy in the left MTC are associated with apathy in cognitively impaired persons.


Assuntos
Doença de Alzheimer/patologia , Apatia , Encéfalo/patologia , Disfunção Cognitiva/patologia , Idoso , Doença de Alzheimer/psicologia , Canadá , Estudos de Casos e Controles , Disfunção Cognitiva/psicologia , Estudos Transversais , Feminino , Humanos , Masculino , Estados Unidos
2.
Crit Care Med ; 48(4): 533-544, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32205600

RESUMO

OBJECTIVES: Cognitive deficits after traumatic brain injury are a leading cause of disability worldwide, yet no effective pharmacologic treatments exist to improve cognition. Traumatic brain injury increases proinflammatory cytokines, which trigger excess function of α5 subunit-containing γ-aminobutyric acid type A receptors. In several models of brain injury, drugs that inhibit α5 subunit-containing γ-aminobutyric acid type A receptor function improve cognitive performance. Thus, we postulated that inhibiting α5 subunit-containing γ-aminobutyric acid type A receptors would improve cognitive performance after traumatic brain injury. In addition, because traumatic brain injury reduces long-term potentiation in the hippocampus, a cellular correlate of memory, we studied whether inhibition of α5 subunit-containing γ-aminobutyric acid type A receptors attenuated deficits in long-term potentiation after traumatic brain injury. DESIGN: Experimental animal study. SETTING: Research laboratory. SUBJECTS: Adult male mice and hippocampal brain slices. INTERVENTIONS: Anesthetized mice were subjected to traumatic brain injury with a closed-head, free-weight drop method. One week later, the mice were treated with L-655,708 (0.5 mg/kg), an inhibitor that is selective for α5 subunit-containing γ-aminobutyric acid type A receptors, 30 minutes before undergoing behavioral testing. Problem-solving abilities were assessed using the puzzle box assay, and memory performance was studied with novel object recognition and object place recognition assays. In addition, hippocampal slices were prepared 1 week after traumatic brain injury, and long-term potentiation was studied using field recordings in the cornu Ammonis 1 region of slices that were perfused with L-655,708 (100 nM). MEASUREMENTS AND MAIN RESULTS: Traumatic brain injury increased the time required to solve difficult but not simple tasks in the puzzle box assay and impaired memory in the novel object recognition and object place recognition assays. L-655,708 improved both problem solving and memory in the traumatic brain injury mice. Traumatic brain injury reduced long-term potentiation in the hippocampal slices, and L-655,708 attenuated this reduction. CONCLUSIONS: Pharmacologic inhibition of α5 subunit-containing γ-aminobutyric acid type A receptors attenuated cognitive deficits after traumatic brain injury and enhanced synaptic plasticity in hippocampal slices. Collectively, these results suggest that α5 subunit-containing γ-aminobutyric acid type A receptors are novel targets for pharmacologic treatment of traumatic brain injury-induced persistent cognitive deficits.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Imidazóis/farmacologia , Memória de Curto Prazo/efeitos dos fármacos , Receptores de GABA-A/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Cognição/efeitos dos fármacos , Condicionamento Clássico/efeitos dos fármacos , Relação Dose-Resposta a Droga , Hipocampo/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Camundongos , Modelos Animais
3.
Anesthesiology ; 129(3): 477-489, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29889105

RESUMO

WHAT WE ALREADY KNOW ABOUT THIS TOPIC: WHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: Postoperative delirium is associated with poor long-term outcomes and increased mortality. General anesthetic drugs may contribute to delirium because they increase cell-surface expression and function of α5 subunit-containing γ-aminobutyric acid type A receptors, an effect that persists long after the drugs have been eliminated. Dexmedetomidine, an α2 adrenergic receptor agonist, prevents delirium in patients and reduces cognitive deficits in animals. Thus, it was postulated that dexmedetomidine prevents excessive function of α5 γ-aminobutyric acid type A receptors. METHODS: Injectable (etomidate) and inhaled (sevoflurane) anesthetic drugs were studied using cultured murine hippocampal neurons, cultured murine and human cortical astrocytes, and ex vivo murine hippocampal slices. γ-Aminobutyric acid type A receptor function and cell-signaling pathways were studied using electrophysiologic and biochemical methods. Memory and problem-solving behaviors were also studied. RESULTS: The etomidate-induced sustained increase in α5 γ-aminobutyric acid type A receptor cell-surface expression was reduced by dexmedetomidine (mean ± SD, etomidate: 146.4 ± 51.6% vs. etomidate + dexmedetomidine: 118.4 ± 39.1% of control, n = 8 each). Dexmedetomidine also reduced the persistent increase in tonic inhibitory current in hippocampal neurons (etomidate: 1.44 ± 0.33 pA/pF, n = 10; etomidate + dexmedetomidine: 1.01 ± 0.45 pA/pF, n = 9). Similarly, dexmedetomidine prevented a sevoflurane-induced increase in the tonic current. Dexmedetomidine stimulated astrocytes to release brain-derived neurotrophic factor, which acted as a paracrine factor to reduce excessive α5 γ-aminobutyric acid type A receptor function in neurons. Finally, dexmedetomidine attenuated memory and problem-solving deficits after anesthesia. CONCLUSIONS: Dexmedetomidine prevented excessive α5 γ-aminobutyric acid type A receptor function after anesthesia. This novel α2 adrenergic receptor- and brain-derived neurotrophic factor-dependent pathway may be targeted to prevent delirium.


Assuntos
Anestésicos Intravenosos/farmacologia , Dexmedetomidina/farmacologia , Etomidato/farmacologia , Hipnóticos e Sedativos/farmacologia , Receptores de GABA-A/fisiologia , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Animais , Células Cultivadas , Técnicas de Cocultura , Função Executiva/efeitos dos fármacos , Função Executiva/fisiologia , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
Schizophr Res ; 211: 10-20, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31331784

RESUMO

BACKGROUND: Treatment-resistant schizophrenia (TRS) and treatment-responsive schizophrenia may exhibit distinct pathophysiology. Several functional magnetic resonance imaging (fMRI) studies have used resting-state functional connectivity analyses (rs-FC) in TRS patients to identify markers of treatment resistance. However, to date, existing findings have not been systematically evaluated. METHODS: A systematic literature search using Embase, MEDLINE, PsycINFO, ProQuest, PUBMED, and Scopus was performed. The query sought fMRI articles investigating rs-FC in treatment response or resistance in patients with schizophrenia. Only studies that examined treatment response, operationalized as the explicit categorization of patients by their response to antipsychotic medication, were considered eligible. Pairwise comparisons between patient groups and controls were extracted from each study. RESULTS: The search query identified 159 records. Ten studies met inclusion criteria. Five studies examined not TRS (NTRS), and 8 studies examined TRS. Differences in rs-FC analysis methodology precluded direct comparisons between studies. However, disruptions in areas involved in visual and auditory information processing were implicated in both patients with TRS and NTRS. Changes in connectivity with sensorimotor network areas tended to appear in the context of TRS but not NTRS. Moreover, there was some indication that this connectivity could be affected by clozapine. CONCLUSIONS: Functional connectivity may provide clinically meaningful biomarkers of treatment response and resistance in schizophrenia. Studies generally identified similar areas of disruption, though methodological differences largely precluded direct comparison between disruption effects. Implementing data sharing as standard practice will allow future reviews and meta-analyses to identify rs-FC correlates of TRS.


Assuntos
Antipsicóticos/uso terapêutico , Encéfalo/diagnóstico por imagem , Esquizofrenia/diagnóstico por imagem , Encéfalo/fisiopatologia , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Esquizofrenia/tratamento farmacológico , Esquizofrenia/fisiopatologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA