Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biophys Rep (N Y) ; 2(3): 100061, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36425331

RESUMO

While exposure of C17.2 neural progenitor cells (NPCs) to nanomolar concentrations of carbon nanotubes (NTs) yields evidence of cellular substructure reorganization and alteration of cell division and differentiation, the mechanisms of NT entry are not understood. This study examines the entry modes of (GT)20 DNA-wrapped single-walled carbon nanotubes (SWCNTs) into NPCs. Several endocytic mechanisms were examined for responsibility in nanomaterial uptake and connections to alterations in cell development via cell-cycle regulation. Chemical cell-cycle arrest agents were used to synchronize NPCs in early G1, late G1/S, and G2/M phases at rates (>80%) aligned with previously documented levels of synchrony for stem cells. Synchronization led to the highest reduction in SWCNT internalization during the G1/S transition of the cell cycle. Concurrently, known inhibitors of endocytosis were used to gain control over established endocytic machineries (receptor-mediated endocytosis (RME), macropinocytosis (MP), and clathrin-independent endocytosis (CIE)), which resulted in a decrease in uptake of SWCNTs across the board in comparison with the control. The outcome implicated RME as the primary mechanism of uptake while suggesting that other endocytic mechanisms, though still fractionally responsible, are not central to SWCNT uptake and can be supplemented by RME when compromised. Thereby, endocytosis of nanomaterials was shown to have a dependency on cell-cycle progression in NPCs.

2.
Adv Biosyst ; 3(4): e1800321, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-32627429

RESUMO

Nanostructured biomaterials are extensively explored in clinical imaging and in gene/drug delivery applications. However, limited studies are performed that examine the influence that nanomaterials may have on cell behavior over long time scales at nonlethal concentrations. This study is designed to investigate whether carbon nanotubes are able to augment cell behavior at low concentrations. Single-walled carbon nanotubes are introduced to neural stem cells at different stages of differentiation at concentrations as low as 5 ng mL-1 . Results demonstrate that in this particular cell model, nanotube uptake is mediated by endocytosis. Differentiation is augmented, especially when nanotubes are introduced to cells in an actively dividing state. Significant increases in neuronal cell population are observed over the control specimens. While the mechanisms behind this observation are yet unknown, this study demonstrates that low concentrations of internalized nanomaterials can significantly alter the differentiation profile of a stem cell line.


Assuntos
Diferenciação Celular/efeitos dos fármacos , DNA de Cadeia Simples , Nanotubos de Carbono/química , Células-Tronco Neurais , Animais , Linhagem Celular , DNA de Cadeia Simples/química , DNA de Cadeia Simples/farmacocinética , DNA de Cadeia Simples/farmacologia , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA