Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(1): e2212325120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36584301

RESUMO

G-protein-gated inwardly rectifying potassium (GIRK) channel activity is regulated by the membrane phospholipid, phosphatidylinositol-4,5-bisphosphate (PI 4,5P2). Constitutive activity of cardiac GIRK channels in atrial myocytes, that is implicated in atrial fibrillation (AF), is mediated via a protein kinase C-ε (PKCε)-dependent mechanism. The novel PKC isoform, PKCε, is reported to enhance the activity of cardiac GIRK channels. Here, we report that PKCε stimulation leads to activation of GIRK channels in mouse atria and in human stem cell-derived atrial cardiomyocytes (iPSCs). We identified residue GIRK4(S418) which when mutated to Ala abolished, or to Glu, mimicked the effects of PKCε on GIRK currents. PKCε strengthened the interactions of the cardiac GIRK isoforms, GIRK4 and GIRK1/4 with PIP2, an effect that was reversed in the GIRK4(S418A) mutant. This mechanistic insight into the PKCε-mediated increase in channel activity because of GIRK4(S418) phosphorylation, provides a precise druggable target to reverse AF-related pathologies due to GIRK overactivity.


Assuntos
Fibrilação Atrial , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G , Camundongos , Animais , Humanos , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/química , Proteína Quinase C-épsilon/genética , Proteína Quinase C-épsilon/metabolismo , Fibrilação Atrial/metabolismo , Átrios do Coração/metabolismo , Miócitos Cardíacos/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-38643259

RESUMO

Poly(lactide-co-glycolide) and poly(lactic-co-glycolic acids) (PLGAs) play a critical role in the development of commercial long-acting injectable microsphere formulations. However, very little information is available describing the impact of PLGA manufacturer and monomer distribution along the polymer chain (e.g., glycolic blockiness (Rc) and average lactic block length (LL)) on the degradation and release behavior of PLGA drug carriers in vitro and in vivo. Here, we compared the in vitro and in vivo performance of (a) four leuprolide-loaded microsphere formulations prepared from similar low-molecular-weight acid-capped PLGAs (10-14 kD, i.e., Expansorb® DLG 75-2A, Purasorb® PDLG 7502A, Resomer® RG 752H and Wako® 7515) and (b) two triamcinolone acetonide-loaded (Tr-A) microsphere formulations from similar medium-molecular-weight ester-capped PLGAs (i.e., Expansorb® DLG 75-4E and Resomer® RG 753S). Lupron Depot® and Zilretta® were used as reference commercial products. The six 75/25 PLGAs displayed block lengths that were either above or below values expected from a random copolymer. Drug release and polymer degradation were monitored simultaneously in vitro and in vivo using a cage implant system. The four leuprolide-loaded formulations showed similar release and degradation patterns with some notable differences between each other. Microspheres from the Expansorb® polymer displayed lower LL and higher Rc relative to the other 3 PLGA 75/25 microspheres, and likewise exhibited distinct peptide release and degradation behavior compared to the other 3 formulations. For each formulation, leuprolide release was erosion-controlled up to about 30% release after the initial burst followed by a faster than erosion release phase. In vitro release was similar as that in vivo over the first phase but notably different from the latter release phase, particularly for the most blocky Expansorb® formulation. The Purasorb® and Wako® formulations displayed highly similar performance in release, degradation, and erosion analysis. By contrast, the two ester-capped Expansorb® DLG 75-4E and Resomer® RG 753S used to prepare Tr-A microspheres shared essentially identical LL and higher Rc and behaved similarly although the Expansorb® degraded and released the steroid faster in vivo, suggestive of other factors responsible (e.g., residual monomer). The in vivo release performance for both drugs from the six microsphere formulations was similar to that of the commercial reference products. In summary, this work details information on comparing the similarities and differences in in vitro and in vivo performance of drug-loaded microspheres as a function of manufacturing and microstructural variables of different types of PLGA raw materials utilized and could, therefore, be meaningful in guiding the source control during development and manufacturing of PLGA microsphere-based drug products. Future work will expand the analysis to include a broader range of LL and higher Rc, and add additional important formulation metrics (e.g., thermal analysis, and residual monomer, moisture, and organic solvent levels).

3.
Int J Pharm ; 643: 123213, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37423376

RESUMO

The once-weekly Bydureon® (Bdn) PLGA microsphere formulation encapsulating the GLP-1 receptor agonist, exenatide acetate, is an important complex injectable product prepared by coacervation for the treatment of type 2 diabetic patients. Encapsulation by coacervation is useful to minimize an undesirable initial burst of exenatide, but it suffers from manufacturing difficulties such as process scale-up and batch-to-batch variations. Herein we prepared exenatide acetate-PLGA formulations of similar compositions using the desirable alternative double emulsion-solvent evaporation technique. After screening several process variables, we varied the PLGA concentration, the hardening temperature, and the collected particle size range, and determined the resulting drug and sucrose loading, initial burst release, in vitro retention kinetics, and peptide degradation profiles using Bdn as a positive control. All formulations exhibited a triphasic release profile with a burst, lag, and rapid release phase, although the burst release was greatly decreased to <5% for some. Marked differences were observed in the peptide degradation profiles, particularly the oxidized and acylated fractions, when the polymer concentration was varied. For one optimal formulation, the release and peptide degradation profiles were similar to Bdn microspheres, albeit with an induction time shift of one week, likely due to the slightly higher Mw of PLGA in Bdn. These results highlight the effects of key manufacturing variables on drug release and stability in composition-equivalent microspheres encapsulating exenatide acetate and indicate the potential of manufacturing the microsphere component of Bdn by solvent evaporation.


Assuntos
Ácido Láctico , Ácido Poliglicólico , Humanos , Exenatida , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Ácido Láctico/química , Ácido Poliglicólico/química , Microesferas , Solventes , Tamanho da Partícula
4.
J Gen Physiol ; 155(6)2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37043561

RESUMO

Voltage-gated sodium (NaV) channels are densely expressed in most excitable cells and activate in response to depolarization, causing a rapid influx of Na+ ions that initiates the action potential. The voltage-dependent activation of NaV channels is followed almost instantaneously by fast inactivation, setting the refractory period of excitable tissues. The gating cycle of NaV channels is subject to tight regulation, with perturbations leading to a range of pathophysiological states. The gating properties of most ion channels are regulated by the membrane phospholipid, phosphatidylinositol (4,5) bisphosphate (PI(4,5)P2). However, it is not known whether PI(4,5)P2 modulates the activity of NaV channels. Here, we utilize optogenetics to activate specific, membrane-associated phosphoinositide (PI)-phosphatases that dephosphorylate PI(4,5)P2 while simultaneously recording NaV1.4 channel currents. We show that dephosphorylating PI(4,5)P2 left-shifts the voltage-dependent gating of NaV1.4 to more hyperpolarized membrane potentials, augments the late current that persists after fast inactivation, and speeds the rate at which channels recover from fast inactivation. These effects are opposed by exogenous diC8PI(4,5)P2. We provide evidence that PI(4,5)P2 is a negative regulator that tunes the gating behavior of NaV1.4 channels.


Assuntos
Ativação do Canal Iônico , Ativação do Canal Iônico/fisiologia , Potenciais da Membrana , Potenciais de Ação
5.
J Control Release ; 352: 438-449, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36030989

RESUMO

The pH inside the aqueous pores of poly(lactic-co-glycolic acid) (PLGA) microspheres, often termed microclimate pH (µpH), has been widely evaluated in vitro and shown to commonly be deleterious to pH-labile encapsulated drug molecules. However, whether the in vitro µpH is representative of the actual in vivo values has long been remained a largely unresolved issue. Herein we quantitatively mapped, for the first time, the in vivo µpH distribution kinetics inside degrading PLGA microspheres by combining two previously validated techniques, a cage implant system and confocal laser scanning microscopy. PLGA (50/50, Mw = 24-38 kDa, acid-end capped and ester-capped) microsphere formulations with and without encapsulating exenatide, a pH-labile peptide that is known to be unstable when pH > 4.5, were administered to rats subcutaneously via cage implants for up to 6 weeks. The results were compared with two different in vitro conditions. Strikingly, the in vivo µpH developed similarly to the low microsphere concentration in vitro condition with 1-µm nylon bags but very different from conventional high microsphere concentration sample-and-separate conditions. Improved maintenance of stable external pH in the release media for the former condition may have been one important factor. Stability of exenatide remaining inside microspheres was evaluated by mass spectrometry and found that it was steadily degraded primarily via pH-dependent acylation with a trend that slightly paralleled the changes in µpH. This methodology may be useful to elucidate pH-triggered instability of PLGA encapsulated drugs in vivo and for improving in vivo-predictive in vitro conditions for assessing general PLGA microsphere performance.


Assuntos
Ácido Láctico , Ácido Poliglicólico , Animais , Ratos , Exenatida , Concentração de Íons de Hidrogênio , Ácido Láctico/química , Microesferas , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
6.
iScience ; 25(9): 104969, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36060074

RESUMO

Cardiovascular diseases remain the leading cause of death worldwide. Most deaths are sudden and occur secondary to the occlusion of coronary arteries resulting in a rapid decrease in cellular oxygen levels. Acute hypoxia is proarrhythmic, leading to disordered electrical signals, conduction block, and uncoordinated beating of the myocardium. Although acute hypoxia is recognized to perturb the electrophysiology of heart muscle, the mechanistic basis for the effect has remained elusive, hampering the development of targeted therapeutic interventions. Here, we show that acute hypoxia activates the redox-sensitive SUMO pathway in cardiomyocytes, causing rapid inhibition of the inward-rectifying K+ channel, Kir2.1. We find that SUMOylation decreases the activation of Kir2.1 channels by the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2). These data provide a mechanistic basis for the proarrhythmic effects of acute hypoxia and offer a framework for understanding the central role of PIP2 in mediating the sequelae of hypoxia and SUMOylation in cardiovascular disease.

7.
Eur J Pharm Biopharm ; 158: 401-409, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33122118

RESUMO

Bydureon® (Bdn) is a once-weekly injectable long-acting release (LAR) product for adults with type 2 diabetes based on PLGA microspheres encapsulating the glucagon like peptide (GLP-1) analog, exenatide. Despite its widespread use in type 2 diabetes treatment, little information has been published concerning the physical-chemical aspects and exenatide stability in this product. Here, we developed and validated methods to evaluate attributes and performance of Bdn such as particle size/size distribution and residual levels of moisture and organic solvent(s). The reverse engineering of the exenatide LAR was also performed to identify and quantify principal components in the product. Stability-indicating UPLC and LC-MS methods were applied to characterize exenatide degradation (such as oxidation, deamidation and acylation products) during in vitro release evaluation. The 55-µm volume-median Bdn microspheres slowly released the exenatidein vitroover two months with a very low initial burst release to avoid unwanted side effects. Residual organic solvent levels (methylene chloride, ethanol, heptane, and silicon oil) also met the USP criteria. Peptide acylation was the most prominent peptide reaction during both encapsulation and in vitro release, and the acylated peptide steadily increased during release relative to parent exenatide, becoming the most abundant peptide species extracted from the microspheres at later release stages. The presence of peptide impurities during the release period, which are not extractable in the polymer and likely insoluble in water, might be one potential cause for immunogenicity. Further evaluation will be needed to confirm this hypothesis. Release of peptide was minimal over the first 2 weeks before the microspheres steadily released peptide for more than 28 days. The rigorous technical approach discussed in this paper may provide critical information for both companies and the FDA for developing generic exenatide-PLGA formulations and other important PLGA microsphere products.


Assuntos
Portadores de Fármacos/química , Exenatida/administração & dosagem , Hipoglicemiantes/administração & dosagem , Microesferas , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacocinética , Diabetes Mellitus Tipo 2/tratamento farmacológico , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Exenatida/farmacocinética , Humanos , Hipoglicemiantes/farmacocinética , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Equivalência Terapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA