Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Integr Plant Biol ; 64(1): 135-148, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34742166

RESUMO

Traditional upland rice generally exhibits insufficient grains resulting from abnormal endosperm development compared to paddy rice. However, the underlying molecular mechanism of this trait is poorly understood. Here, we cloned the uridine 5'-diphospho (UDP)-glucosyltransferase gene EDR1 (Endosperm Development in Rice) responsible for differential endosperm development between upland rice and paddy rice by performing quantitative trait loci analysis and map-based cloning. EDR1 was highly expressed in developing seeds during grain filling. Natural variations in EDR1 significantly reduced the UDP-glucosyltransferase activity of EDR1YZN compared to EDR1YD1 , resulting in abnormal endosperm development in the near-isogenic line, accompanied by insufficient grains and changes in grain quality. By analyzing the distribution of the two alleles EDR1YD1 and EDR1YZN among diverse paddy rice and upland rice varieties, we discovered that EDR1 was conserved in upland rice, but segregated in paddy rice. Further analyses of grain chalkiness in the alleles of EDR1YD1 and EDR1YZN varieties indicated that rice varieties harboring EDR1YZN and EDR1YD1 preferentially showed high chalkiness, and low chalkiness, respectively. Taken together, these results suggest that the UDP-glucosyltransferase gene EDR1 is an important determinant controlling differential endosperm development between upland rice and paddy rice.


Assuntos
Oryza , Alelos , Endosperma/genética , Glucosiltransferases/genética , Oryza/genética , Uridina
2.
Cells ; 11(15)2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35954172

RESUMO

WRKY transcription factors play critical roles in the modulation of transcriptional changes during leaf senescence, but the underlying mechanisms controlled by them in this progress still remain enigmatic. In this study, Gossypium hirsutum WRKY DNA-binding protein 33 (GhWRKY33) was characterized as a negative regulator of both ageing and JA-mediated leaf senescence. The overexpression of GhWRKY33 in Arabidopsis greatly delayed leaf senescence, as determined by elevated chlorophyll content, lower H2O2 content, and reduced expression of several senescence-associated genes (SAGs). An electrophoretic mobility shift assay (EMSA) and transient dual-luciferase reporter assay revealed that GhWRKY33 could bind to the promoters of both AtSAG12 and Ghcysp and suppress their expression. Yeast two-hybrid (Y2H) and firefly luciferase complementation imaging (LUC) assays showed that GhWRKY33 could interact with GhTIFY10A. Similarly, the overexpression of GhTIFY10A in Arabidopsis also dramatically delayed leaf senescence. Furthermore, both GhWRKY33 and GhTIFY10A negatively regulate JA-mediated leaf senescence. In addition, a transientdual-luciferase reporter assay indicated that GhWRKY33 and GhTIFY10A could function synergistically to inhibit the expression of both AtSAG12 and Ghcysp. Thus, our work suggested that GhWRKY33 may function as a negative regulator to modulate both ageing and JA-mediated leaf senescence and also contributes to a basis for further functional studies on cotton leaf senescence.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Gossypium/metabolismo , Peróxido de Hidrogênio/metabolismo , Folhas de Planta/metabolismo , Senescência Vegetal
3.
Plant Divers ; 44(2): 213-221, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35505986

RESUMO

Thermosensitive genic male sterility (TGMS) has been widely used in two-line hybrid rice breeding. Due to hybrid seed production being highly affected by changeable environments, its application scope is limited to some extent. Thus, it is of great importance to identify potential TGMS genes in specific rice varieties. Here, Diannong S-1 xuan (DNS-1X), a reverse TGMS (RTGMS) japonica male sterile line, was identified from Diannong S-1. Genetic analysis showed that male sterility was tightly controlled by a single recessive gene, which was supported by the phenotype of the F1 and F2:3 populations derived from the cross between DNS-1X and Yunjing 26 (YJ26). Combining simple sequence repeat (SSR) markers and bulked segregation analysis (BSA), we identified a 215 kb region on chromosome 10 as a candidate reverse TGMS region, which was designated as rtms1-D. It was narrower than the previously reported RTGMS genes rtms1 and tms6(t). The fertility conversion detected in the natural environment showed that DNS-1X was sterile below 28-30 °C; otherwise, it was fertile. Histological analysis further indicated that the pollen abortion was occurred in the young microspore stage. This study will provide new resources for two-line hybrid rice and pave the way for molecular breeding of RTGMS lines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA