Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 8(51): eadc8753, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36542703

RESUMO

Salivary gland acinar cells are severely depleted after radiotherapy for head and neck cancer, leading to loss of saliva and extensive oro-digestive complications. With no regenerative therapies available, organ dysfunction is irreversible. Here, using the adult murine system, we demonstrate that radiation-damaged salivary glands can be functionally regenerated via sustained delivery of the neurogenic muscarinic receptor agonist cevimeline. We show that endogenous gland repair coincides with increased nerve activity and acinar cell division that is limited to the first week after radiation, with extensive acinar cell degeneration, dysfunction, and cholinergic denervation occurring thereafter. However, we found that mimicking cholinergic muscarinic input via sustained local delivery of a cevimeline-alginate hydrogel was sufficient to regenerate innervated acini and retain physiological saliva secretion at nonirradiated levels over the long term (>3 months). Thus, we reveal a previously unknown regenerative approach for restoring epithelial organ structure and function that has extensive implications for human patients.

2.
J Orthop Res ; 39(1): 53-62, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32533783

RESUMO

Currently, there are no standardized methods for quantitatively measuring fracture repair. Physicians rely on subjective physical examinations and qualitative evaluation of radiographs to detect mineralized tissue. Since most fractures heal indirectly through a cartilage intermediate, these tools are limited in their diagnostic utility of early repair. Prior to converting to the bone, cartilage undergoes hypertrophic maturation, characterized by the deposition of a provisional collagen X matrix. The objective of this study was to characterize the kinetics of a novel collagen X biomarker relative to other biological measurements of fracture healing using a murine model of endochondral fracture repair in which a closed, mid-shaft tibia fracture was created using the classic drop-weight technique. Serum was collected 5 to 42 days post-fracture in male and female mice and compared to uninjured controls (n = 8-12). Collagen X in the serum was quantified using a recently validated ELISA-based bioassay ("Cxm")1 and compared to genetic and histological markers of fracture healing and inflammation. We found the Cxm biomarker reliably increased from baseline to a statistically unique peak 14 days post-fracture that then resolved to pre-fracture levels by 3 weeks following injury. The shape and timing of the Cxm curve followed the genetic and histological expression of collagen X but did not show a strong correlation with local inflammatory states. Assessment of fracture healing progress is crucial to making correct and timely clinical decisions for patients. This Cxm bioassay represents a minimally invasive, inexpensive technique that could provide reliable information on the biology of the fracture to significantly improve clinical care.


Assuntos
Colágeno Tipo X/sangue , Consolidação da Fratura , Fraturas da Tíbia/sangue , Animais , Biomarcadores/sangue , Feminino , Masculino , Camundongos Endogâmicos C57BL , Caracteres Sexuais
3.
Protein Sci ; 30(6): 1169-1183, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33840137

RESUMO

Despite the need to monitor the impact of Cancer Immunotherapy (CI)/Immuno-Oncology (IO) therapeutics on neoantigen-specific T-cell responses, very few clinical programs incorporate this aspect of immune monitoring due to the challenges in high-throughput (HTP) generation of Major Histocompatibility Complex Class I (MHCI) tetramers across a wide range of HLA alleles. This limitation was recently addressed through the development of MHCI complexes with peptides containing a nonnatural UV cleavable amino acid (conditional MHCI ligands) that enabled HTP peptide exchange upon UV exposure. Despite this advancement, the number of alleles with known conditional MHCI ligands is limited. We developed a novel workflow to enable identification and validation of conditional MHCI ligands across a range of HLA alleles. First, known peptide binders were screened via an enzyme-linked immunosorbent assay (ELISA) assay. Conditional MHCI ligands were designed using the highest-performing peptides and evaluated in the same ELISA assay. The top performers were then selected for scale-up production. Next-generation analytical techniques (LC/MS, SEC-MALS, and 2D LC/MS) were used to characterize the complex after refolding with the conditional MHCI ligands. Finally, we used 2D LC/MS to evaluate peptide exchange with these scaled-up conditional MHCI complexes after UV exposure with validated peptide binders. Successful peptide exchange was observed for all conditional MHCI ligands upon UV exposure, validating our screening approach. This approach has the potential to be broadly applied and enable HTP generation of MHCI monomers and tetramers across a wider range of HLA alleles, which could be critical to enabling the use of MHCI tetramers to monitor neoantigen-specific T-cells in the clinic.


Assuntos
Antígenos de Histocompatibilidade Classe I/química , Peptídeos/química , Humanos , Ligantes
4.
Microbes Infect ; 15(6-7): 461-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23541981

RESUMO

Chlamydia species are obligate intracellular pathogens that proliferate only within infected cells. Currently, there are no known techniques or systems that can probe the spatial distribution of metabolites of interest within intact Chlamydia-infected cells. Here we investigate the ability of Raman microscopy to probe the chemical composition of different compartments (nucleus, inclusion, and cytoplasm) of Chlamydia trachomatis-infected epithelial cells. The overall intensity of the Raman spectrum is greatest in the inclusions and lowest in the cytoplasm in fixed cells. Difference spectra generated by normalizing to the intensity of the strong 1004 cm(-1) phenylalanine line show distinct differences among the three compartments. Most notably, the concentrations of adenine are greater in both the inclusions and the nucleus than in the cytoplasm, as seen by Raman microscopy. The source of the adenine was explored through a complementary approach, using two-photon microscopy imaging. Autofluorescence measurements of living, infected cells show that the adenine-containing molecules, NAD(P)H and FAD, are present mainly in the cytoplasm, suggesting that these molecules are not the source of the additional adenine signal in the nucleus and inclusions. Experiments of infected cells stained with a DNA-binding dye, Hoechst 33258, reveal that most of the DNA is present in the nucleus and the inclusions, suggesting that DNA/RNA is the main source of the additional Raman adenine signal in the nucleus and inclusions. Thus, Raman and two-photon microscopy are among the few non-invasive methods available to investigate cells infected with Chlamydia and, together, should also be useful for studying infection by other intracellular pathogens that survive within intracellular vacuoles.


Assuntos
Núcleo Celular/química , Chlamydia trachomatis/fisiologia , Citoplasma/química , Corpos de Inclusão/química , Microscopia/métodos , Análise Espectral Raman/métodos , Chlamydia trachomatis/crescimento & desenvolvimento , Chlamydia trachomatis/metabolismo , Células Epiteliais/química , Células Epiteliais/microbiologia , Células HeLa , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA