Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 486, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39412657

RESUMO

Our previous study has found that monoclonal antibodies targeting a conserved epitope peptide spanning from residues 1144 to 1156 of SARS-CoV-2 spike (S) protein, namely S(1144-1156), can broadly neutralize all of the prevalent SARS-CoV-2 strains, including the wild type, Alpha, Epsilon, Delta, and Gamma variants. In the study, S(1144-1156) was conjugated with bovine serum albumin (BSA) and formulated with Montanide ISA 51 adjuvant for inoculation in BALB/c mice to study its potential as a vaccine candidate. Results showed that the titers of S protein-specific IgGs and the neutralizing antibodies in mouse sera against various SARS-CoV-2 variants, including the Omicron sublineages, were largely induced along with three doses of immunization. The significant release of IFN-γ and IL-2 was also observed by ELISpot assays through stimulating vaccinated mouse splenocytes with the S(1144-1156) peptide. Furthermore, the vaccination of the S(1143-1157)- and S(1142-1158)-EGFP fusion proteins can elicit more SARS-CoV-2 neutralizing antibodies in mouse sera than the S(1144-1156)-EGFP fusion protein. Interestingly, the antisera collected from mice inoculated with the S(1144-1156) peptide vaccine exhibited better efficacy for neutralizing Omicron BA.2.86 and JN.1 subvariants than Omicron BA.1, BA.2, and XBB subvariants. Since the amino acid sequences of the S(1144-1156) are highly conserved among various SARS-CoV-2 variants, the immunogen containing the S(1144-1156) core epitope can be designed as a broadly effective COVID-19 vaccine. KEY POINTS: • Inoculation of mice with the S(1144-1156) peptide vaccine can induce bnAbs against various SARS-CoV-2 variants. • The S(1144-1156) peptide stimulated significant release of IFN-γ and IL-2 in vaccinated mouse splenocytes. • The S(1143-1157) and S(1142-1158) peptide vaccines can elicit more SARS-CoV-2 nAbs in mice.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Epitopos , Camundongos Endogâmicos BALB C , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Vacinas contra COVID-19/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Camundongos , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Epitopos/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , Feminino , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Humanos , Peptídeos/imunologia , Peptídeos/genética , Peptídeos/química , Interferon gama/metabolismo
2.
Appl Microbiol Biotechnol ; 107(9): 2983-2995, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36988669

RESUMO

Vaccination is considered to be the most effective countermeasure to prevent and combat the global health threats of COVID-19. People with obesity are at a greater risk of hospitalization, life-threatening illness, and adverse outcomes after having COVID-19. Therefore, a safe and effective COVID-19 vaccine for obese individuals is urgently needed. In the study, the vaccine composed of the ISA 51 adjuvant and the SARS-CoV-2 spike (S) receptor-binding domain (RBD) in conjugation with the human IgG1 Fc fragment (named as ISA 51-adjuvanted RBD-Fc vaccine) was developed and inoculated in the regular chow diet (RCD) lean mice and the high-fat diet (HFD)-induced obese mice. The S protein-specific IgG titers were largely induced in an increasing manner along with three doses of ISA 51-adjuvanted RBD-Fc vaccine without causing any harmful side effect. In the HFD mice, the S protein-specific IgG titers can be quickly observed 2 weeks post the first inoculation. The antisera elicited by the ISA 51-adjuvanted RBD-Fc vaccine in the RCD and HFD mice exhibited potent SARS-CoV-2 neutralizing activities in the plaque reduction neutralization test (PRNT) assays and showed similar specificity for recognizing the key residues in the RBD which were involved in interacting with angiotensin-converting enzyme 2 (ACE2) receptor. The immune efficacy of the ISA 51-adjuvanted RBD-Fc vaccine in the HFD mice can be sustainably maintained with the PRNT50 values of 1.80-1.91×10-3 for at least 8 weeks post the third inoculation. Collectively, the RBD-Fc-based immunogen and the ISA 51-adjuvanted formulation can be developed as an effective COVID-19 vaccine for obese individuals. KEY POINTS: • The ISA 51-adjuvanted RBD-Fc vaccine can induce potent SARS-CoV-2 neutralizing antibodies in the obese mouse • The antibodies elicited by the ISA 51-adjuvanted RBD-Fc vaccine can bind to the key RBD residues involved in interacting with ACE2 • The immune efficacy of the ISA 51-adjuvanted RBD-Fc vaccine can be sustainably maintained for at least 8 weeks post the third inoculation.


Assuntos
COVID-19 , Vacinas , Humanos , Animais , Camundongos , Anticorpos Neutralizantes , Vacinas contra COVID-19 , SARS-CoV-2 , Camundongos Obesos , Enzima de Conversão de Angiotensina 2 , COVID-19/prevenção & controle , Anticorpos Antivirais , Imunoglobulina G , Glicoproteína da Espícula de Coronavírus
3.
Appl Microbiol Biotechnol ; 106(24): 8183-8194, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36404356

RESUMO

The nucleic acid test is still the standard assessment for the diagnosis of coronavirus disease 2019 (COVID-19), which is caused by human infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In addition to supporting the confirmation of disease cases, serological assays are used for the analysis of antibody status and epidemiological surveys. In this study, a single Western blot strip (WBS) coated with multiple Escherichia coli (E. coli)-expressed SARS-CoV-2 antigens was developed for comprehensive studies of antibody profiles in COVID-19 patient sera. The levels of specific antibodies directed to SARS-CoV-2 spike (S), S2, and nucleocapsid (N) proteins were gradually increased with the same tendency as the disease progressed after hospitalization. The signal readouts of S, S2, and N revealed by the multi-antigen-coated WBS (mWBS)-based serological assay (mWBS assay) also demonstrated a positive correlation with the SARS-CoV-2 neutralizing potency of the sera measured by the plaque reduction neutralization test (PRNT) assays. Surprisingly, the detection signals against the unstructured receptor-binding domain (RBD) purified from E. coli inclusion bodies were not observed, although the COVID-19 patient sera exhibited strong neutralizing potency in the PRNT assays, suggesting that the RBD-specific antibodies in patient sera mostly recognize the conformational epitopes. Furthermore, the mWBS assay identified a unique and major antigenic epitope at the residues 1148, 1149, 1152, 1155, and 1156 located within the 1127-1167 fragment of the S2 subunit, which was specifically recognized by the COVID-19 patient serum. The mWBS assay can be finished within 14-16 min by using the automatic platform of Western blotting by thin-film direct coating with suction (TDCS WB). Collectively, the mWBS assay can be applied for the analysis of antibody responses, prediction of the protective antibody status, and identification of the specific epitope. KEY POINTS: • A Western blot strip (WBS) coated with multiple SARS-CoV-2 antigens was developed for the serological assay. • The multi-antigen-coated WBS (mWBS) can be utilized for the simultaneous detection of antibody responses to multiple SARS-CoV-2 antigens. • The mWBS-based serological assay (mWBS assay) identified a unique epitope recognized by the COVID-19 patient serum.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Formação de Anticorpos , COVID-19/diagnóstico , Escherichia coli/genética , Western Blotting
4.
Appl Microbiol Biotechnol ; 105(1): 235-245, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33245391

RESUMO

The highly pathogenic avian influenza (HPAI) H5N8 virus has been detected in wild birds and poultry worldwide. The threat caused by HPAI H5N8 virus still exists with concerns for human infection. The preparedness for epidemic prevention and decreasing the agricultural and economic lost is extremely important. Hemagglutinin (HA), a surface glycoprotein of influenza viruses, is considered as the major target for detection of the influenza virus subtype in the infected samples. In this study, the recombinant H5N8 HA1 and HA2 proteins were expressed in Escherichia coli, and were utilized to generate two monoclonal antibodies, named 7H6C and YC8. 7H6C can bind the HA proteins of H5N1 and H5N8, but cannot bind the HA proteins of H1N1, H3N2, and H7N9, indicating that it has H5-subtype specificity. In contrast, YC8 can bind the HA proteins of H1N1, H5N1, and H5N8, but cannot bind the HA proteins of H3N2 and H7N9, indicating that it has H1-subtype and H5-subtype specificity. The epitope sequences recognized by 7H6C are located in the head domain of H5N8 HA, and are highly conserved in H5 subtypes. The epitope sequences recognized by YC8 are located in the stalk domain of H5N8 HA, and are highly conserved among the H1 and H5 subtypes. 7H6C and YC8 can be applied for specific detection of the HA proteins of H5N8 and H5Nx avian influenza viruses. KEY POINTS: • The mAb 7H6C or YC8 was generated by using the HA1 or HA2 of the HPAI H5N8 virus as the immunogen. • 7H6C recognized the head domain of H5N8 HA, and YC8 recognized the stalk domain of H5N8 HA. • 7H6C and YC8 can detect the HA proteins of H5Nx subtypes specifically.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Subtipo H7N9 do Vírus da Influenza A , Influenza Aviária , Animais , Anticorpos Monoclonais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Hemaglutininas , Humanos , Vírus da Influenza A Subtipo H3N2 , Virus da Influenza A Subtipo H5N1/genética , Influenza Aviária/diagnóstico
5.
Appl Microbiol Biotechnol ; 105(11): 4663-4673, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34043078

RESUMO

The recent Zika virus (ZIKV) epidemic poses a serious threat to global health due to its association with microcephaly and congenital diseases in newborns and neurological complications and Guillain-Barré syndrome in adults. However, the majority of people infected with ZIKV do not develop symptoms. The platforms aimed to specifically diagnose ZIKV infection are needed for patient care and public health surveillance. In the study, four ZIKV envelope (E) protein-specific monoclonal antibodies (mAbs) (A1, B1, C1, and 9E-1) have been developed by using the conventional mAb technology. The binding epitopes of mAbs A1, B1, C1, and 9E-1 are located at E(238-257), E(410-431), E(258-277), and E(340-356), respectively. mAb 9E-1 performs 1.4- to 47-fold strong affinity to ZIKV E protein compared to another three mAbs. mAbs A1, C1, and 9E-1 do not have cross-reactivity against the recombinant E proteins of dengue virus serotypes 2, 3, and 4. Although these four mAbs do not have ZIKV neutralizing activity, mAbs B1 and 9E-1 have been developed as the lateral flow immunochromatographic assay for specific detection of ZIKV E protein and virions. KEY POINTS: • The mAbs targeting to the regions of E(238-257), E(410-431), E(258-277), and E(340-356) do not have ZIKV neutralizing activity. • The binding epitope of mAb 9E-1 is highly specific to ZIKV E protein. • mAbs B1 and 9E-1 can bind to ZIKV virions and have been developed as the lateral flow immunochromatographic assay.


Assuntos
Infecção por Zika virus , Zika virus , Adulto , Animais , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Epitopos , Humanos , Recém-Nascido , Camundongos , Envelope Viral , Proteínas do Envelope Viral , Infecção por Zika virus/diagnóstico
6.
Appl Microbiol Biotechnol ; 105(8): 3235-3248, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33770244

RESUMO

Many cases of avian influenza A(H7N9) virus infection in humans have been reported since its first emergence in 2013. The disease is of concern because most patients have become severely ill with roughly 30% mortality rate. Because the threat in public health caused by H7N9 virus remains high, advance preparedness is essentially needed. In this study, the recombinant H7N9 hemagglutinin (HA) was expressed in insect cells and purified for generation of two monoclonal antibodies, named F3-2 and 1C6B. F3-2 can only recognize the H7N9 HA without having cross-reactivity with HA proteins of H1N1, H3N2, H5N1, and H7N7. 1C6B has the similar specificity with F3-2, but 1C6B can also bind to H7N7 HA. The binding epitope of F3-2 is mainly located in the region of H7N9 HA(299-307). The binding epitope of 1C6B is located in the region of H7N9 HA(489-506). F3-2 and 1C6B could not effectively inhibit the hemagglutination activity of H7N9 HA. However, F3-2 can prevent H7N9 HA from trypsin cleavage and can bind to H7N9 HA which has undergone pH-induced conformational change. F3-2 also has the ability of binding to H7N9 viral particles and inhibiting H7N9 virus infection to MDCK cells with the IC50 value of 22.18 µg/mL. In addition, F3-2 and 1C6B were utilized for comprising a lateral flow immunochromatographic test strip for specific detection of H7N9 HA. KEY POINTS: • Two mouse monoclonal antibodies, F3-2 and 1C6B, were generated for recognizing the novel binding epitopes in H7N9 HA. • F3-2 can prevent H7N9 HA from trypsin cleavage and inhibit H7N9 virus infection to MDCK cells. • F3-2 and 1C6B were developed as a lateral flow immunochromatographic test for specific detection of H7N9 HA.


Assuntos
Subtipo H7N9 do Vírus da Influenza A , Influenza Humana , Animais , Anticorpos Monoclonais , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Hemaglutininas , Humanos , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N2 , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H7N7 , Influenza Humana/prevenção & controle , Camundongos
7.
BMC Biotechnol ; 17(1): 2, 2017 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-28061848

RESUMO

BACKGROUND: Human infection with avian influenza A virus (H7N9) was first reported in China in March 2013. Since then, hundreds of cases have been confirmed showing severe symptoms with a high mortality rate. The virus was transmitted from avian species to humans and has spread to many neighboring areas, raising serious concerns over its pandemic potential. Towards containing the disease, the goal of this study is to prepare a virus-like particle (VLP) that consists of hemagglutinin (HA), neuraminidase (NA) and matrix protein 1 (M1) derived from the human isolate A/Taiwan/S02076/2013(H7N9) for potential vaccine development. RESULTS: Full length HA, NA, and M1 protein genes were cloned and expressed using a baculoviral expression system, and the VLPs were generated by co-infecting insect cells with three respective recombinant baculoviruses. Nanoparticle tracking analysis and transmission electron microscopy were applied to verify the VLPs' structure and antigenicity, and the multiplicity of infection of the recombinant baculoviruses was adjusted to achieve the highest hemagglutination activity. In animal experiments, BALB/c mice and specific-pathogen-free chickens receiving the VLP immunization showed elevated hemagglutination inhibition serum titer and antibodies against NA and M1 proteins. In addition, examination of cellular immunity showed the VLP-immunized mice and chickens exhibited an increased splenic antigen-specific cytokines production. CONCLUSIONS: The H7N9 VLPs possess desirable immunogenicity in vivo and may serve as a candidate for vaccine development against avian influenza A (H7N9) infection.


Assuntos
Antígenos Virais/imunologia , Galinhas/imunologia , Vírus da Influenza A/imunologia , Camundongos/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Animais , Antígenos Virais/genética , Feminino , Vírus da Influenza A/genética , Camundongos Endogâmicos BALB C , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Especificidade da Espécie , Vacinas de Partículas Semelhantes a Vírus/genética
8.
PLoS Genet ; 10(6): e1004428, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24968003

RESUMO

Spatiotemporal regulation of cell migration is crucial for animal development and organogenesis. Compared to spatial signals, little is known about temporal signals and the mechanisms integrating the two. In the Caenorhabditis elegans hermaphrodite, the stereotyped migration pattern of two somatic distal tip cells (DTCs) is responsible for shaping the gonad. Guidance receptor UNC-5 is necessary for the dorsalward migration of DTCs. We found that BLMP-1, similar to the mammalian zinc finger transcription repressor Blimp-1/PRDI-BF1, prevents precocious dorsalward turning by inhibiting precocious unc-5 transcription and is only expressed in DTCs before they make the dorsalward turn. Constitutive expression of blmp-1 when BLMP-1 would normally disappear delays unc-5 transcription and causes turn retardation, demonstrating the functional significance of blmp-1 down-regulation. Correct timing of BLMP-1 down-regulation is redundantly regulated by heterochronic genes daf-12, lin-29, and dre-1, which regulate the temporal fates of various tissues. DAF-12, a steroid hormone receptor, and LIN-29, a zinc finger transcription factor, repress blmp-1 transcription, while DRE-1, the F-Box protein of an SCF ubiquitin ligase complex, binds to BLMP-1 and promotes its degradation. We have therefore identified a gene circuit that integrates the temporal and spatial signals and coordinates with overall development of the organism to direct cell migration during organogenesis. The tumor suppressor gene product FBXO11 (human DRE-1 ortholog) also binds to PRDI-BF1 in human cell cultures. Our data suggest evolutionary conservation of these interactions and underscore the importance of DRE-1/FBXO11-mediated BLMP-1/PRDI-BF1 degradation in cellular state transitions during metazoan development.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas F-Box/genética , Organogênese/genética , Proteínas Repressoras/genética , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Movimento Celular/genética , Evolução Molecular , Proteínas F-Box/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/crescimento & desenvolvimento , Gônadas/metabolismo , Humanos , Fator 1 de Ligação ao Domínio I Regulador Positivo , Proteólise , Receptores de Superfície Celular/genética
9.
Anal Chem ; 88(12): 6349-56, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27254752

RESUMO

Thin-film direct coating (TDC) has been successfully used in Western blotting (WB). In this study, the advanced technique of TDC with suction (TDCS) was developed to reduce the consumption amount of antibody by a factor of up to 10(4) in comparison with the amount consumed by the conventional WB using the capillary tube without any need of special micromachining processes. The operation time for completely finishing a high-quality WB can be reduced from 3 h in conventional WB to about 5 min or even less by TDCS. In addition, the signal-to-noise ratio of the immunoblotting by TDCS can be markedly increased. TDCS WB showed a high linearity within a 6-log2 dynamic range for detecting 90-6000 ng of purified recombinant glutathione-S-transferase (GST) proteins and could particularly detect extrinsic GST proteins added in crude Escherichia coli or 293T cell lysates. Moreover, a protein mixture containing bovine serum albumin, GST, and ubiquitin could be specifically probed in parallel with their corresponding antibodies through multichannel TDCS WB. This simple and innovative TDCS WB offers various potential applications in simultaneously finishing multiple antibody-antigen screenings in a fast and single experiment.

10.
Mol Cell ; 30(3): 360-8, 2008 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-18471981

RESUMO

Substrates enter the cylindrical 20S proteasome through a gated channel that is regulated by the ATPases in the 19S regulatory particle in eukaryotes or the homologous PAN ATPase complex in archaea. These ATPases contain a conserved C-terminal hydrophobic-tyrosine-X (HbYX) motif that triggers gate opening upon ATP binding. Using cryo-electron microscopy, we identified the sites in the archaeal 20S where PAN's C-terminal residues bind and determined the structures of the gate in its closed and open forms. Peptides containing the HbYX motif bind to 20S in the pockets between neighboring alpha subunits where they interact with conserved residues required for gate opening. This interaction induces a rotation in the alpha subunits and displacement of a reverse-turn loop that stabilizes the open-gate conformation. This mechanism differs from that of PA26/28, which lacks the HbYX motif and does not cause alpha subunit rotation. These findings demonstrated how the ATPases' C termini function to facilitate substrate entry.


Assuntos
Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/ultraestrutura , Proteínas Arqueais/metabolismo , Proteínas Arqueais/ultraestrutura , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/ultraestrutura , Conformação Proteica , Adenosina Trifosfatases/genética , Motivos de Aminoácidos , Animais , Proteínas Arqueais/genética , Sítios de Ligação , Microscopia Crioeletrônica , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Thermoplasma/química , Thermoplasma/metabolismo
11.
Anal Chem ; 86(10): 5164-70, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24773468

RESUMO

A novel thin-film direct coating (TDC) technique was developed to markedly reduce the amount of antibody required for Western blotting (WB). Automatic application of the technique for a few seconds easily and homogeneously coats the specific primary antibody on the polyvinylidene fluoride (PVDF) membrane. While conventional WB requires 0.4 µg of the primary antibody, the proposed technique only uses 4 × 10(-2) µg, which can be reduced further to 4 × 10(-5) µg by reducing the coater width. Moreover, the proposed process reduces antibody probing times from 60 to 10 min. The quantification capability of TDC WB showed high linearity within a 4-log2 dynamic range for detecting target antigen glutathione-S-transferase. Furthermore, TDC WB can specifically detect the extrinsic glutathione-S-transferase added in the Escherichia coli or 293T cell lysate with better staining sensitivity than conventional WB. TDC WB can also clearly probe the intrinsic ß-actin, α-tubulin, and glyceraldehyde 3-phosphate dehydrogenase, which are usually used as control proteins in biological experiments. This novel technique has been shown to not only have valuable potential for increasing WB efficiency but also for providing significant material savings for future biomedical applications.


Assuntos
Western Blotting/instrumentação , Anticorpos/química , Western Blotting/métodos , Escherichia coli/enzimologia , Glutationa Transferase/química , Células HEK293 , Humanos , Membranas Artificiais , Polivinil , Proteínas/química
12.
Poult Sci ; 103(2): 103332, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128459

RESUMO

In late 2020, an outbreak of Tembusu virus (TMUV)-associated disease occurred in a 45-day-old white Roman geese flock in Taiwan. Here, we present the identification and isolation of a novel goose-origin TMUV strain designated as NTU/C225/2020. The virus was successfully isolated using minimal-pathogen-free duck embryos. Phylogenetic analysis of the polyprotein gene showed that NTU/C225/2020 clustered together with the earliest isolates from Malaysia and was most closely related to the first Taiwanese TMUV strain, TP1906. Genomic analysis revealed significant amino acid variations among TMUV isolates in NS1 and NS2A protein regions. In the present study, we characterized the NTU/C225/2020 culture in duck embryos, chicken embryos, primary duck embryonated fibroblasts, and DF-1 cells. All host systems were susceptible to NTU/C225/2020 infection, with observable lesions. In addition, animal experiments showed that the intramuscular inoculation of NTU/C225/2020 resulted in growth retardation and hyperthermia in day-old chicks. Gross lesions in the infected chicks included hepatomegaly, hyperemic thymus, and splenomegaly. Viral loads and histopathological damage were displayed in various tissues of both inoculated and naïve co-housed chicks, confirming the direct chick-to-chick contact transmission of TMUV. This is the first in vivo study of a local TMUV strain in Taiwan. Our findings provide essential information for TMUV propagation and suggest a potential risk of disease outbreak in chicken populations.


Assuntos
Infecções por Flavivirus , Flavivirus , Doenças das Aves Domésticas , Embrião de Galinha , Animais , Infecções por Flavivirus/veterinária , Gansos , Galinhas , Filogenia , Virulência , Cetuximab , Doenças das Aves Domésticas/patologia , Patos
13.
Emerg Microbes Infect ; 12(2): 2220582, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37254830

RESUMO

Since the onset of the coronavirus disease 2019 (COVID-19), numerous neutralizing antibodies (NAbs) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been developed and authorized for emergency use to control the pandemic. Most COVID-19 therapeutic NAbs prevent the S1 subunit of the SARS-CoV-2 spike (S) protein from binding to the human host receptor. However, the emergence of SARS-CoV-2 immune escape variants, which possess frequent mutations on the S1 subunit, may render current NAbs ineffective. In contrast, the relatively conserved S2 subunit of the S protein can elicit NAbs with broader neutralizing potency against various SARS-CoV-2 variants. In this review, the binding specificity and functional features of SARS-CoV-2 NAbs targeting different domains of the S2 subunit are collectively discussed. The knowledge learned from the investigation of the S2-specific NAbs provides insights and potential strategies for developing antibody cocktail therapy and next-generation coronavirus vaccine.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Vacinas contra COVID-19 , Anticorpos Antivirais , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus
14.
Kidney Int ; 81(7): 640-50, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22237753

RESUMO

The expression of the renoprotective antiaging gene Klotho is decreased in uremia. Recent studies suggest that Klotho may be a tumor suppressor, and its expression may be repressed by DNA hypermethylation in cancer cells. Here we investigated the effects and possible mechanisms by which Klotho expression is regulated during uremia in uninephrectomized B-6 mice given the uremic toxins indoxyl sulfate or p-cresyl sulfate. Cultured human renal tubular HK2 cells treated with these toxins were used as an in vitro model. Injections of indoxyl sulfate or p-cresyl sulfate increased their serum concentrations, kidney fibrosis, CpG hypermethylation of the Klotho gene, and decreased Klotho expression in renal tubules of these mice. The expression of DNA methyltransferases 1, 3a, and 3b isoforms in HK2 cells treated with indoxyl sulfate or p-cresyl sulfate was significantly increased. Specific inhibition of DNA methyltransferase isoform 1 by 5-aza-2'-deoxycytidine caused demethylation of the Klotho gene and increased Klotho expression in vitro. Thus, inhibition of Klotho gene expression by uremic toxins correlates with gene hypermethylation, suggesting that epigenetic modification of specific genes by uremic toxins may be an important pathological mechanism of disease.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/genética , Metilação de DNA/fisiologia , Glucuronidase/genética , Toxinas Biológicas/metabolismo , Uremia/genética , Uremia/metabolismo , Animais , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Linhagem Celular , Ilhas de CpG , Cresóis/metabolismo , Cresóis/toxicidade , DNA (Citosina-5-)-Metiltransferase 1 , Decitabina , Expressão Gênica/efeitos dos fármacos , Humanos , Indicã/metabolismo , Indicã/toxicidade , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Proteínas Klotho , Camundongos , Ligação Proteica , Ésteres do Ácido Sulfúrico , Toxinas Biológicas/toxicidade , Uremia/etiologia , Uremia/patologia
15.
Vaccines (Basel) ; 10(11)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36366348

RESUMO

Recombinant proteins are essential in the development of subunit vaccines. In the design of many recombinant proteins, polyhistidine residues are added to the N- or C-termini of target sequences to facilitate purification. However, whether the addition of tag residues influences the immunogenicity of proteins remains unknown. In this study, the tag-free SARS-CoV-2 RBD and His-tag SARS-CoV-2 RBD proteins were investigated to determine whether there were any differences in their receptor binding affinity and immunogenicity. The results showed that the tag-free RBD protein had a higher affinity for binding with hACE2 receptors than His-tag RBD proteins (EC50: 1.78 µM vs. 7.51 µM). On day 21 after primary immunization with the proteins, the serum ELISA titers of immunized mice were measured and found to be 1:1418 for those immunized with tag-free RBD and only 1:2.4 for His-tag RBD. Two weeks after the booster dose, tag-free-RBD-immunized mice demonstrated a significantly higher neutralizing titer of 1:369 compared with 1:7.9 for His-tag-RBD-immunized mice. Furthermore, neutralizing antibodies induced by tag-free RBD persisted for up to 5 months and demonstrated greater cross-neutralization of the SARS-CoV-2 Delta variant. Evidence from Western blotting showed that the serum of His-tag-RBD-immunized mice recognized irrelevant His-tag proteins. Collectively, we conclude that the addition of a polyhistidine tag on a recombinant protein, when used as a COVID-19 vaccine antigen, may significantly impair protein immunogenicity against SARS-CoV-2. Antibody responses induced were clearly more rapid and robust for the tag-free SARS-CoV-2 RBD than the His-tag SARS-CoV-2 RBD. These findings provide important information for the design of antigens used in the development of COVID-19 subunit vaccines.

16.
Antiviral Res ; 200: 105290, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35296418

RESUMO

Neutralizing antibodies (NAbs) are believed to be promising prophylactic and therapeutic treatment against the coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we reported two mouse monoclonal antibodies 7 Eb-4G and 1Ba-3H that specifically recognized the receptor-binding domain (RBD) of SARS-CoV-2 spike (S) protein without exhibiting cross-reactivity with the S proteins of SARS-CoV and MERS-CoV. The binding epitopes of 7 Eb-4G and 1Ba-3H were respectively located in the regions of residues 457-476 and 477-496 in the S protein. Only 1Ba-3H exhibited the neutralizing activity for preventing the pseudotyped lentivirus from binding to the angiotensin-converting enzyme 2 (ACE2)-transfected HEK293T cells. The competitive ELISA further showed that 1Ba-3H interfered with the binding between RBD and ACE2. Epitope mapping experiments demonstrated that a single alanine replacement at residues 480, 482, 484, 485, and 488-491 in the RBD abrogated 1Ba-3H binding. 1Ba-3H exhibited the neutralizing activity against the wild-type, Alpha, Delta, and Epsilon variants of SARS-CoV-2, but lost the neutralizing activity against Gamma variant in the plaque reduction assay. On the contrary, 1Ba-3H enhanced the cellular infection of Gamma variant in a dose-dependent manner. Our findings suggest that the antibody-dependent enhancement of infection mediated by the RBD-specific antibody for different SARS-CoV-2 variants must be considered while developing the NAb.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Monoclonais , Epitopos , Células HEK293 , Humanos , Camundongos , Glicoproteína da Espícula de Coronavírus
17.
Microbiol Spectr ; 10(2): e0181421, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35293796

RESUMO

Most of SARS-CoV-2 neutralizing antibodies (nAbs) targeted the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) protein. However, mutations at RBD sequences found in the emerging SARS-CoV-2 variants greatly reduced the effectiveness of nAbs. Here we showed that four nAbs, S2-4D, S2-5D, S2-8D, and S2-4A, which recognized a conserved epitope in the S2 subunit of the S protein, can inhibit SARS-CoV-2 infection through blocking the S protein-mediated membrane fusion. Notably, these four nAbs exhibited broadly neutralizing activity against SARS-CoV-2 Alpha, Gamma, Delta, and Epsilon variants. Antisera collected from mice immunized with the identified epitope peptides of these four nAbs also exhibited potent virus neutralizing activity. Discovery of the S2-specific nAbs and their unique antigenic epitopes paves a new path for development of COVID-19 therapeutics and vaccines. IMPORTANCE The spike (S) protein on the surface of SARS-CoV-2 mediates receptor binding and virus-host cell membrane fusion during virus entry. Many neutralizing antibodies (nAbs), which targeted the receptor binding domain (RBD) of S protein, lost the neutralizing activity against the newly emerging SARS-CoV-2 variants with sequence mutations at the RBD. In contrast, the nAb against the highly conserved S2 subunit, which plays the key role in virus-host cell membrane fusion, was poorly discovered. We showed that four S2-specific nAbs, S2-4D, S2-5D, S2-8D, and S2-4A, inhibited SARS-CoV-2 infection through blocking the S protein-mediated membrane fusion. These nAbs exhibited broadly neutralizing activity against Alpha, Gamma, Delta, and Epsilon variants. Antisera induced by the identified epitope peptides also possessed potent neutralizing activity. This work not only unveiled the S2-specific nAbs but also discovered an immunodominant epitope in the S2 subunit that can be rationally designed as the broad-spectrum vaccine against the SARS-like coronaviruses.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Epitopos , Soros Imunes , Fusão de Membrana , Camundongos , Glicoproteína da Espícula de Coronavírus/genética
18.
Cell Rep ; 36(9): 109621, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34469741

RESUMO

Radiotherapy (RT) resistance is a major cause of treatment failure in cancers that use definitive RT as their primary treatment modality. This study identifies the cancer/testis (CT) antigen G antigen (GAGE) as a mediator of radio resistance in cervical cancers. Elevated GAGE expression positively associates with de novo RT resistance in clinical samples. GAGE, specifically the GAGE12 protein variant, confers RT resistance through synemin-dependent chromatin localization, promoting the association of histone deacetylase 1/2 (HDAC1/2) to its inhibitor actin. This cumulates to elevated histone 3 lysine 56 acetylation (H3K56Ac) levels, increased chromatin accessibility, and improved DNA repair efficiency. Molecular or pharmacological disruption of the GAGE-associated complex restores radiosensitivity. Molecularly, this study demonstrates the role of GAGE in the regulation of chromatin dynamics. Clinically, this study puts forward the utility of GAGE as a pre-screening biomarker to identify poor responders at initial diagnosis and the therapeutic potential of agents that target GAGE and its associated complex in combination with radiotherapy to improve outcomes.


Assuntos
Antígenos de Neoplasias , Montagem e Desmontagem da Cromatina , Cromatina , Histonas , Tolerância a Radiação , Neoplasias do Colo do Útero , Animais , Feminino , Humanos , Acetilação , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Cromatina/genética , Cromatina/metabolismo , Reparo do DNA , Regulação Neoplásica da Expressão Gênica , Células HeLa , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Histonas/metabolismo , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/metabolismo , Lisina , Camundongos Endogâmicos BALB C , Camundongos Nus , Processamento de Proteína Pós-Traducional , Tolerância a Radiação/genética , Transdução de Sinais , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/radioterapia , Ensaios Antitumorais Modelo de Xenoenxerto
19.
J Exp Med ; 199(7): 905-15, 2004 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-15067030

RESUMO

Mutations within cytotoxic T lymphocyte (CTL) epitopes impair T cell recognition, but escape mutations arising in flanking regions that alter antigen processing have not been defined in natural human infections. In human histocompatibility leukocyte antigen (HLA)-B57+ HIV-infected persons, immune selection pressure leads to a mutation from alanine to proline at Gag residue 146 immediately preceding the NH2 terminus of a dominant HLA-B57-restricted epitope, ISPRTLNAW. Although N-extended wild-type or mutant peptides remained well-recognized, mutant virus-infected CD4 T cells failed to be recognized by the same CTL clones. The A146P mutation prevented NH2-terminal trimming of the optimal epitope by the endoplasmic reticulum aminopeptidase I. These results demonstrate that allele-associated sequence variation within the flanking region of CTL epitopes can alter antigen processing. Identifying such mutations is of major relevance in the construction of vaccine sequences.


Assuntos
Apresentação de Antígeno , Antígenos HIV/genética , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/genética , HIV-1/imunologia , Linfócitos T Citotóxicos/imunologia , Alelos , Sequência de Aminoácidos , Sequência de Bases , Células Clonais , DNA Viral/genética , Epitopos/genética , Produtos do Gene gag/genética , Produtos do Gene gag/imunologia , Variação Genética , Infecções por HIV/genética , Antígenos HLA-B/genética , Humanos , Dados de Sequência Molecular , Mutação , Homologia de Sequência de Aminoácidos
20.
Planta ; 232(3): 649-62, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20544217

RESUMO

Dynamic modification of target proteins by small ubiquitin-like modifier (SUMO) is known to modulate many important cellular processes and is required for cell viability and development in all eukaryotes. However, understanding of SUMO systems in plants, especially in unicellular green algae, remains elusive. In this study, Chlamydomonas reinhardtii CrSUMO96, CrSUMO97 and CrSUMO148 were characterized. We show that the formation of polymeric CrSUMO96 and CrSUMO97 chains can be catalyzed either by the human SAE1/SAE2 and Ubc9 SUMOylation system in vitro or by an Escherichia coli chimeric SUMOylation system in vivo. An exposed C-terminal di-glycine motif of CrSUMO96 or CrSUMO97 is essential for functional SUMOylation. The human SUMO-specific protease, SENP1, demonstrates more processing activity for CrSUMO97 than for CrSUMO96. The CrSUMO148 precursor notably has four repeated di-glycine motifs at the C-terminus. This unique feature is not found in other known SUMO proteins. Interestingly, only 83-residual CrSUMO148(1-83) with the first di-glycine motif can form SAE1/SAE2-SUMO complex and further form polymeric chains with the help of Ubc9. More surprisingly, CrSUMO148 precursor is digested by SENP1, solely at the peptide bond after the first di-glycine motif although there are four theoretically identical processing sites in the primary sequence. This process directly generates 83-residual CrSUMO148(1-83) mature protein, which is exactly the form suitable for activation and conjugation. We also show that SENP1 displays similar isopeptidase activity in the deconjugation of polymeric CrSUMO96, CrSUMO97 or CrSUMO148 chains, revealing that the catalytic mechanisms of processing and deconjugation of CrSUMOs by SENP1 may differ.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Ubiquitina/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Chlamydomonas reinhardtii/genética , Primers do DNA , Modelos Moleculares , Dados de Sequência Molecular , RNA de Plantas/genética , Homologia de Sequência de Aminoácidos , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/química , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA