Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(19): e2219757120, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126698

RESUMO

The development of modern birds provides a window into the biology of their dinosaur ancestors. We investigated avian postnatal development and found that sterile inflammation drives formation of the pygostyle, a compound structure resulting from bone fusion in the tail. Inflammation is generally induced by compromised tissue integrity, but here is involved in normal bone development. Transcriptome profiling and immuno/histochemistry reveal a robust inflammatory response that resembles bone fracture healing. The data suggest the involvement of necroptosis and multiple immune cell types, notably heterophils (the avian equivalent of neutrophils). Additionally, nucleus pulposus structures, heretofore unknown in birds, are involved in disc remodeling. Anti-inflammatory corticosteroid treatment inhibited vertebral fusion, substantiating the crucial role of inflammation in the ankylosis process. This study shows that inflammation can drive developmental skeletogenesis, in this case leading to the formation of a flight-adapted tail structure on the evolutionary path to modern avians.


Assuntos
Aves , Inflamação , Animais , Evolução Biológica , Coluna Vertebral , Neutrófilos
2.
Dev Dyn ; 250(9): 1229-1235, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33548113

RESUMO

Amniote tails display a wide variety of features for adaptation to diverse environments. Each feature originates from its own distinct developmental processes, and these processes in turn attest to an organism's evolutionary history. In this perspective, we discuss the ontogeny of tails from embryonic to adult stages, amniote tail regeneration, the mechanisms underlying tail length and neural systems, and the benefits of studying tails across vertebrates, in mammals, birds, and non-avian reptiles.


Assuntos
Répteis , Vertebrados , Animais , Evolução Biológica , Aves , Mamíferos
3.
J Anat ; 230(3): 424-434, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27861854

RESUMO

Cartilage morphogenesis during endochondral ossification follows a progression of conserved developmental events. Cells are specified towards a prechondrogenic fate and subsequently undergo condensation followed by overt differentiation. Currently available molecular markers of prechondrogenic and condensing mesenchyme rely on common regulators of the chondrogenic program that are not specific to the tissue type or location. Therefore tissue-specific condensations cannot be distinguished based on known molecular markers. Here, using the chick embryo model, we utilized lectin labeling on serial sections, demonstrating that differential labeling by peanut agglutinin (PNA) and Sambucus nigra agglutinin (SNA) successfully separates adjacently located condensations in the proximal second pharyngeal arch. PNA selectively labels chick middle ear columella and basal plate condensation, whereas SNA specifically marks extracolumella and the ventro-lateral part of the otic capsule. We further extended our study to examine lectin-binding properties of the different parts of the inner ear epithelium, neural tube and notochord. Our results show that SNA labels the auditory and vestibular hair cells of the inner ear, whereas PNA specifically recognizes the statoacoustic ganglion. PNA is also highly specific for the floor plate of the neural tube. Additionally, wheat germ agglutinin (WGA) labels the basement membrane of the notochord and is a marker of the apical-basal polarity of the cochlear duct. Overall, this study indicates that selective lectin labeling is a promising approach to differentiate between contiguously located mesenchymal condensations and subregions of epithelia globally during development.


Assuntos
Cartilagem/embriologia , Embrião de Galinha/embriologia , Orelha/embriologia , Lectinas , Células Neuroepiteliais/citologia , Coloração e Rotulagem/métodos , Animais , Condrogênese/fisiologia
4.
Dev Dyn ; 243(6): 833-843, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24599775

RESUMO

BACKGROUND: WNT1 and WNT3A drive a dorsal to ventral gradient of ß-catenin-dependent Wnt signaling in the developing spinal cord. However, the identity of the receptors mediating downstream functions remains poorly understood. RESULTS: In this report, we show that the spatiotemporal expression patterns of FZD10 and WNT1/WNT3A are highly correlated. We further show that in the presence of LRP6, FZD10 promotes WNT1 and WNT3A signaling using an 8xSuperTopFlash reporter assay. Consistent with a functional role for FZD10, we demonstrate that FZD10 is required for proliferation in the spinal cord. Finally, by using an in situ proximity ligation assay, we observe an interaction between FZD10 and WNT1 and WNT3A proteins. CONCLUSIONS: Together, our results identify FZD10 as a receptor for WNT1 and WNT3A in the developing chick spinal cord.


Assuntos
Proteínas Aviárias/metabolismo , Receptores Frizzled/metabolismo , Medula Espinal/embriologia , Proteína Wnt1/metabolismo , Proteína Wnt3A/metabolismo , Animais , Embrião de Galinha
5.
Int J Mol Sci ; 15(6): 9670-717, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24886813

RESUMO

DNA mutations are the cause of many human diseases and they are the reason for natural differences among individuals by affecting the structure, function, interactions, and other properties of DNA and expressed proteins. The ability to predict whether a given mutation is disease-causing or harmless is of great importance for the early detection of patients with a high risk of developing a particular disease and would pave the way for personalized medicine and diagnostics. Here we review existing methods and techniques to study and predict the effects of DNA mutations from three different perspectives: in silico, in vitro and in vivo. It is emphasized that the problem is complicated and successful detection of a pathogenic mutation frequently requires a combination of several methods and a knowledge of the biological phenomena associated with the corresponding macromolecules.


Assuntos
DNA/genética , Mutação , Polimorfismo de Nucleotídeo Único , Animais , Inteligência Artificial , Simulação por Computador , Predisposição Genética para Doença , Testes Genéticos/métodos , Técnicas de Genotipagem/métodos , Humanos , Estabilidade Proteica , Análise de Sequência de DNA/métodos
6.
Dev Dyn ; 241(6): 1091-103, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22411638

RESUMO

The pharyngeal endoderm is hypothesized as the source of local signals that specify the identity of neural crest-derived mesenchyme in the arches. Sox9 is induced and maintained in prechondrogenic cells during condensation formation and endochondral ossification. Using explant culture, we determined that pharyngeal endoderm was sufficient, but not necessary for specifying prechondrogenic identity, as surrounding tissues including the otic vesicle can compensate for signals from the pharyngeal endoderm. Multiple Fgf genes are expressed specifically in the pharyngeal endoderm subjacent to the neural crest-derived mesenchyme. Fibroblast growth factor (FGF) signaling is both sufficient and required for specification of Sox9 expression and specification of prechondrogenic identity, as demonstrated by the addition of recombinant FGF protein or the FGF receptor inhibitor (SU5402) to explanted tissue, respectively. However, FGF signaling cannot maintain Sox9 expression or initiate the chondrogenic program as indicated by the absence of Col2a1 transcripts. Bone morphogenetic protein (BMP) 4 signaling can induce and maintain Sox9 expression in isolated mesenchyme, but only in combination with FGF signaling induce Col2a1 expression, and thus, chondrogenesis. Given the spatiotemporal expression patterns of FGFs and BMPs in the pharyngeal arches, we suggest that this may represent a general mechanism of local signals specifying prechondrogenic identity and initiation of the chondrogenic program.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Condrogênese/fisiologia , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Mesoderma/fisiologia , Modelos Biológicos , Transdução de Sinais/fisiologia , Animais , Embrião de Galinha , Regulação da Expressão Gênica no Desenvolvimento/genética , Hibridização In Situ , Microesferas , Crista Neural/fisiologia , Fatores de Transcrição SOX9/metabolismo
7.
Hum Mol Genet ; 19(7): 1286-301, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20071345

RESUMO

Total anomalous pulmonary venous return (TAPVR) is a congenital heart defect inherited via complex genetic and/or environmental factors. We report detailed mapping in extended TAPVR kindreds and mutation analysis in TAPVR patients that implicate the PDGFRA gene in the development of TAPVR. Gene expression studies in mouse and chick embryos for both the Pdgfra receptor and its ligand Pdgf-a show temporal and spatial patterns consistent with a role in pulmonary vein (PV) development. We used an in ovo function blocking assay in chick and a conditional knockout approach in mouse to knock down Pdgfra expression in the developing venous pole during the period of PV formation. We observed that loss of PDGFRA function in both organisms causes TAPVR with low penetrance (approximately 7%) reminiscent of that observed in our human TAPVR kindreds. Intermediate inflow tract anomalies occurred in a higher percentage of embryos (approximately 30%), suggesting that TAPVR occurs at one end of a spectrum of defects. We show that the anomalous pulmonary venous connection seen in chick and mouse is highly similar to TAPVR discovered in an abnormal early stage embryo from the Kyoto human embryo collection. Whereas the embryology of the normal venous pole and PV is becoming understood, little is known about the embryogenesis or molecular pathogenesis of TAPVR. These models of TAPVR provide important insight into the pathogenesis of PV defects. Taken together, these data from human genetics and animal models support a role for PDGF-signaling in normal PV development, and in the pathogenesis of TAPVR.


Assuntos
Cardiopatias Congênitas/genética , Veias Pulmonares/anormalidades , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Animais , Embrião de Galinha , Humanos , Camundongos , Camundongos Mutantes , Modelos Animais , Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo
8.
BMC Dev Biol ; 10: 16, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-20158901

RESUMO

BACKGROUND: The chick middle ear bone, the columella, provides an accessible model in which to study the tissue and molecular interactions necessary for induction and patterning of the columella, as well as associated multiple aspects of endochondral ossification. These include mesenchymal condensation, chondrogenesis, ossification of the medial footplate and shaft, and joint formation between the persistent cartilage of the extracolumella and ossified columella. Middle and external ear defects are responsible for approximately 10% of congenital hearing defects. Thus, understanding the morphogenesis and the molecular mechanisms of the formation of the middle ear is important to understanding normal and abnormal development of this essential component of the hearing apparatus. RESULTS: The columella, which arises from proximal ectomesenchyme of the second pharyngeal arch, is induced and patterned in a dynamic multi-step process. From the footplate, which inserts into the inner ear oval window, the shaft spans the pneumatic middle ear cavity, and the extracolumella inserts into the tympanic membrane. Through marker gene and immunolabeling analysis, we have determined the onset of each stage in the columella's development, from condensation to ossification. Significantly, a single condensation with the putative shaft and extracolumella arms already distinguishable is observed shortly before initiation of five separate chondrogenic centers within these structures. Ossification begins later, with periosteum formation in the shaft and, unexpectedly, a separate periosteum in the footplate. CONCLUSIONS: The data presented in this study document the spatiotemporal events leading to morphogenesis of the columella and middle ear structures and provide the first gene expression data for this region. These data identify candidate genes and facilitate future functional studies and elucidation of the molecular mechanisms of columella formation.


Assuntos
Embrião de Galinha , Orelha Média/embriologia , Osteogênese , Animais , Movimento Celular , Condrogênese , Orelha Média/citologia , Morfogênese , Crista Neural/fisiologia , Periósteo/fisiologia
9.
Environ Toxicol Chem ; 39(1): 162-170, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31499578

RESUMO

2,2',3,5',6-Pentachlorobiphenyl (PCB-95) is an environmental neurotoxicant. There is accumulated evidence that some neurotoxic effects of PCB-95 are caused by increased spontaneous Ca2+ oscillations in neurons resulting from modifying ryanodine receptors (RyR) in calcium-releasing channels. However, there are large gaps in explaining brain and other developmental malformations on embryonic PCB-95 exposure. In the present study, we address those deficiencies by studying the toxic effects of PCB-95 using zebrafish as an ontogenetic model. To characterize these effects, zebrafish embryos with intact chorions were exposed to 4 different concentrations of PCB-95 (0.25, 0.5, 0.75, and 1 ppm) for 3 consecutive days. The controls were maintained in 0.5 × E2 medium or egg water and in 0.1% (v/v) dimethyl sulfoxide (DMSO)/0.5 × E2 medium or egg water. PCB-95-treated groups showed dose-dependent decreases in survival and hatching rates, with increased rates of developmental malformations when compared to controls. These include morphological malformations, brain cell necrosis, and smaller eye sizes at 5 d post fertilization. These data suggest potential mechanisms underlying the abnormal behavior observed in a visual stimulus assay. The present study provides insight into PCB-95-induced developmental toxicity and supports the use of the zebrafish model in understanding the effects of PCB-95 exposure. Environ Toxicol Chem 2019;39:162-170. © 2019 SETAC.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Bifenilos Policlorados/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/anormalidades , Animais , Sinalização do Cálcio/efeitos dos fármacos , Relação Dose-Resposta a Droga , Embrião não Mamífero/anormalidades , Modelos Teóricos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
10.
Sci Rep ; 10(1): 6303, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286419

RESUMO

The avian transition from long to short, distally fused tails during the Mesozoic ushered in the Pygostylian group, which includes modern birds. The avian tail embodies a bipartite anatomy, with the proximal separate caudal vertebrae region, and the distal pygostyle, formed by vertebral fusion. This study investigates developmental features of the two tail domains in different bird groups, and analyzes them in reference to evolutionary origins. We first defined the early developmental boundary between the two tail halves in the chicken, then followed major developmental structures from early embryo to post-hatching stages. Differences between regions were observed in sclerotome anterior/posterior polarity and peripheral nervous system development, and these were consistent in other neognathous birds. However, in the paleognathous emu, the neognathous pattern was not observed, such that spinal nerve development extends through the pygostyle region. Disparities between the neognaths and paleognaths studied were also reflected in the morphology of their pygostyles. The ancestral long-tailed spinal nerve configuration was hypothesized from brown anole and alligator, which unexpectedly more resembles the neognathous birds. This study shows that tail anatomy is not universal in avians, and suggests several possible scenarios regarding bird evolution, including an independent paleognathous long-tailed ancestor.


Assuntos
Galinhas/fisiologia , Especiação Genética , Nervos Espinhais/crescimento & desenvolvimento , Cauda/inervação , Jacarés e Crocodilos/anatomia & histologia , Animais , Embrião de Galinha , Galinhas/anatomia & histologia , Desenvolvimento Embrionário/fisiologia , Fósseis/anatomia & histologia , Lagartos/anatomia & histologia , Filogenia , Nervos Espinhais/anatomia & histologia , Cauda/crescimento & desenvolvimento
11.
PLoS One ; 14(12): e0225834, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31821332

RESUMO

Gallus gallus (chicken) is phenotypically diverse, with over 60 recognized breeds, among the myriad species within the Aves lineage. Domestic chickens have been under artificial selection by humans for thousands of years for agricultural purposes. The North American Araucana (NAA) breed arose as a cross between the Chilean "Collonocas" that laid blue eggs and was rumpless and the "Quetros" that had unusual tufts but with tail. NAAs were introduced from South America in the 1940s and have been kept as show birds by enthusiasts since then due to several distinctive traits: laying eggs with blue eggshells, characteristic ear-tufts, a pea comb, and rumplessness. The population has maintained variants for clean-faced and tufted, as well as tailed and rumplessness traits making it advantageous for genetic studies. Genome resequencing of six NAA chickens with a mixture of these traits was done to 71-fold coverage using Illumina HiSeq 2000 paired-end reads. Trimmed and concordant reads were mapped to the Gallus_gallus-5.0 reference genome (galGal5), generated from a female Red Junglefowl (UCD001). To identify candidate genes that are associated with traits of the NAA, their genome was compared with the Korean Araucana, Korean Domestic and White Leghorn breeds. Genomic regions with significantly reduced levels of heterogeneity were detected on five different chromosomes in NAA. The sequence data generated confirm the identity of variants responsible for the blue eggshells, pea comb, and rumplessness traits of NAA and propose one for ear-tufts.


Assuntos
Galinhas/genética , Variação Genética , Genoma , Sequenciamento Completo do Genoma , Animais , Cruzamento , Cromossomos/genética , Variações do Número de Cópias de DNA/genética , Marcadores Genéticos , Anotação de Sequência Molecular , Mutação/genética , Polimorfismo de Nucleotídeo Único/genética , Característica Quantitativa Herdável
12.
Sci Rep ; 8(1): 9014, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29899503

RESUMO

The avian tail played a critical role in the evolutionary transition from long- to short-tailed birds, yet its ontogeny in extant birds has largely been ignored. This deficit has hampered efforts to effectively identify intermediate species during the Mesozoic transition to short tails. Here we show that fusion of distal vertebrae into the pygostyle structure does not occur in extant birds until near skeletal maturity, and mineralization of vertebral processes also occurs long after hatching. Evidence for post-hatching pygostyle formation is also demonstrated in two Cretaceous specimens, a juvenile enantiornithine and a subadult basal ornithuromorph. These findings call for reinterpretations of Zhongornis haoae, a Cretaceous bird hypothesized to be an intermediate in the long- to short-tailed bird transition, and of the recently discovered coelurosaur tail embedded in amber. Zhongornis, as a juvenile, may not yet have formed a pygostyle, and the amber-embedded tail specimen is reinterpreted as possibly avian. Analyses of relative pygostyle lengths in extant and Cretaceous birds suggests the number of vertebrae incorporated into the pygostyle has varied considerably, further complicating the interpretation of potential transitional species. In addition, this analysis of avian tail development reveals the generation and loss of intervertebral discs in the pygostyle, vertebral bodies derived from different kinds of cartilage, and alternative modes of caudal vertebral process morphogenesis in birds. These findings demonstrate that avian tail ontogeny is a crucial parameter specifically for the interpretation of Mesozoic specimens, and generally for insights into vertebrae formation.


Assuntos
Aves/crescimento & desenvolvimento , Fósseis , Morfogênese , Cauda/crescimento & desenvolvimento , Âmbar/química , Animais , Evolução Biológica , Aves/anatomia & histologia , Galinhas/anatomia & histologia , Galinhas/crescimento & desenvolvimento , Plumas/anatomia & histologia , Plumas/crescimento & desenvolvimento , Coluna Vertebral/anatomia & histologia , Coluna Vertebral/crescimento & desenvolvimento , Cauda/anatomia & histologia , Fatores de Tempo , Microtomografia por Raio-X
13.
BMC Dev Biol ; 7: 91, 2007 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-17663788

RESUMO

BACKGROUND: Chick definitive endoderm is an important source of signals that pattern the early embryo forming a central structure around which the body plan is constructed. Although the origin of definitive endoderm has been mapped in the chick, arising principally from rostral streak at elongating streak stages, it is not known when this layer first becomes fully committed to its germ layer fate, an important issue to resolve in light of its critical role in subsequent patterning of the early embryo. RESULTS: Through gene expression screening of chick gastrula, we identified molecular markers of definitive endoderm restricted to rostral (Sox17) and caudal (Gata5/6) regions, suggesting that at least two subpopulations of definitive endodermal cells exist during ingression. We show (1) that presumptive mesoderm cells migrate to the middle layer and remain mesenchymal when transplanted to rostral primitive streak, and prospective endoderm cells enter the lower layer and become epithelial when transplanted to caudal primitive streak; and (2) that presumptive endoderm cells and mesoderm cells lose normal gene expression (Sox17 and Wnt8c, respectively) when transplanted outside of their normal position of origin. Moreover, when rostral or caudal primitive streak segments are transplanted into rostral blastoderm isolates (RBIs), both types of transplants express Sox17 4-6 hours later--consistent with their new position, regardless of their presumptive germ layer origin--and prospective mesoderm transplants, which normally express Wnt8c, turn off expression, suggesting that signals within the rostral blastoderm induce endoderm gene expression, and repress mesoderm gene expression, during gastrulation. CONCLUSION: Our results demonstrate that germ layer identity is fixed at the time populations of endoderm and mesoderm cells ingress through the primitive streak, whereas their gene expression patterns remain labile. In addition, our results show that inductive and repressive signals are present, and that these signals regulate gene expression of both ingressed endoderm and mesoderm cells. Thus, gastrula cells display elements of both pre-patterning and plasticity, with endoderm the first germ layer becoming committed to its fate during early gastrulation stages.


Assuntos
Embrião de Galinha/embriologia , Indução Embrionária/genética , Endoderma/citologia , Gástrula/citologia , Regulação da Expressão Gênica no Desenvolvimento , Animais , Linhagem da Célula , Transplante de Células , Fatores de Transcrição GATA/genética , Marcadores Genéticos , Mesoderma/citologia , Codorniz/embriologia , Quimeras de Transplante
14.
Brain Struct Funct ; 222(1): 131-149, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-26995070

RESUMO

The inner ear is a morphologically complex sensory structure with auditory and vestibular functions. The developing otic epithelium gives rise to neurosensory and non-sensory elements of the adult membranous labyrinth. Extrinsic and intrinsic signals manage the patterning and cell specification of the developing otic epithelium by establishing lineage-restricted compartments defined in turn by differential expression of regulatory genes. FGF3 and FGF16 are excellent candidates to govern these developmental events. Using the chick inner ear, we show that Fgf3 expression is present in the borders of all developing cristae. Strong Fgf16 expression was detected in a portion of the developing vertical and horizontal pouches, whereas the cristae show weaker or undetected Fgf16 expression at different developmental stages. Concerning the rest of the vestibular sensory elements, both the utricular and saccular maculae were Fgf3 positive. Interestingly, strong Fgf16 expression delimited these Fgf16-negative sensory patches. The Fgf3-negative macula neglecta and the Fgf3-positive macula lagena were included within weakly Fgf16-expressing areas. Therefore, different FGF-mediated mechanisms might regulate the specification of the anterior (utricular and saccular) and posterior (neglecta and lagena) maculae. In the developing cochlear duct, dynamic Fgf3 and Fgf16 expression suggests their cooperation in the early specification and later cell differentiation in the hearing system. The requirement of Fgf3 and Fgf16 genes in endolymphatic apparatus development and neurogenesis are discussed. Based on these observations, FGF3 and FGF16 seem to be key signaling pathways that control the inner ear plan by defining epithelial identities within the developing otic epithelium.


Assuntos
Proteínas Aviárias/metabolismo , Orelha Interna/embriologia , Orelha Interna/metabolismo , Fator 3 de Crescimento de Fibroblastos/metabolismo , Animais , Galinhas , Fatores de Crescimento de Fibroblastos/metabolismo
15.
J Comp Neurol ; 487(4): 428-40, 2005 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-15906316

RESUMO

The pituitary gland is unique to Chordates, with significant variation within this group, offering an excellent opportunity to increase insight into phylogenetic relationships within this phylum. The structure of the pituitary in adult Teleosts (class: Osteichthyes) is quite different from that in other chordates and is also variable among members of the class. Therefore, a complete description of the structure and development of the pituitary in members of this class is a critical component to our overall understanding of this gland. An obvious teleost model organism is the zebrafish, Danio rerio, as a significant amount of work has been done on the molecular control of pituitary development in this fish. However, very little work has been published on the morphological development of the pituitary in the zebrafish; the present study aims to fill this void. The pituitary develops from cells on the rostrodorsal portion of the head and reaches its final position, ventral to the hypothalamus, as the cephalic flexure occurs and the jaws and mouth form. The pituitary placode is juxtaposed to cells that will form the olfactory vesicles, the stomodeum, and the hatching gland. The volume of the pituitary is greatest at 24 hours post fertilization (hpf). From 24 to 120 hpf, the pituitary decreases in height and width as it undergoes convergent extension, increasing in length with the axis. The adenohypophysis is a morphologically distinct structure by 24 hpf, whereas the neurohypophysis remains indistinct until 72 hpf. The findings of this study correlate well with the available molecular data.


Assuntos
Imageamento Tridimensional/métodos , Hipófise , Animais , Animais Recém-Nascidos , Embrião não Mamífero , Hipófise/citologia , Hipófise/embriologia , Hipófise/crescimento & desenvolvimento , Peixe-Zebra
16.
PLoS One ; 10(8): e0134702, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26237312

RESUMO

Skeletal condensation occurs when specified mesenchyme cells self-organize over several days to form a distinctive cartilage template. Here, we determine how and when specified mesenchyme cells integrate mechanical and molecular information from their environment, forming cartilage condensations in the pharyngeal arches of chick embryos. By disrupting cytoskeletal reorganization, we demonstrate that dynamic cell shape changes drive condensation and modulate the response of the condensing cells to Fibroblast Growth Factor (FGF), Bone Morphogenetic Protein (BMP) and Transforming Growth Factor beta (TGF-ß) signaling pathways. Rho Kinase (ROCK)-driven actomyosin contractions and Myosin II-generated differential cell cortex tension regulate these cell shape changes. Disruption of the condensation process inhibits the differentiation of the mesenchyme cells into chondrocytes, demonstrating that condensation regulates the fate of the mesenchyme cells. We also find that dorsal and ventral condensations undergo distinct cell shape changes. BMP signaling is instructive for dorsal condensation-specific cell shape changes. Moreover, condensations exhibit ventral characteristics in the absence of BMP signaling, suggesting that in the pharyngeal arches ventral morphology is the ground pattern. Overall, this study characterizes the interplay between cytoskeletal dynamics and molecular signaling in a self-organizing system during tissue morphogenesis.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Forma Celular/fisiologia , Citoesqueleto/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Actinas/metabolismo , Animais , Forma Celular/efeitos dos fármacos , Células Cultivadas , Embrião de Galinha , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Condrogênese/efeitos dos fármacos , Condrogênese/fisiologia , Citocalasina D/farmacologia , Citoesqueleto/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Transdução de Sinais/efeitos dos fármacos
17.
PLoS One ; 9(11): e112364, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25372603

RESUMO

Axis elongation of the vertebrate embryo involves the generation of cell lineages from posterior progenitor populations. We investigated the molecular mechanism governing axis elongation in vertebrates using the Araucana rumpless chicken. Araucana embryos exhibit a defect in axis elongation, failing to form the terminal somites and concomitant free caudal vertebrae, pygostyle, and associated tissues of the tail. Through whole genome sequencing of six Araucana we have identified a critical 130 kb region, containing two candidate causative SNPs. Both SNPs are proximal to the IRX1 and IRX2 genes, which are required for neural specification. We show that IRX1 and IRX2 are both misexpressed within the bipotential chordoneural hinge progenitor population of Araucana embryos. Expression analysis of BRA and TBX6, required for specification of mesoderm, shows that both are downregulated, whereas SOX2, required for neural patterning, is expressed in ectopic epithelial tissue. Finally, we show downregulation of genes required for the protection and maintenance of the tailbud progenitor population from the effects of retinoic acid. Our results support a model where the disruption in balance of mesoderm and neural fate results in early depletion of the progenitor population as excess neural tissue forms at the expense of mesoderm, leading to too few mesoderm cells to form the terminal somites. Together this cascade of events leads to axis truncation.


Assuntos
Proteínas Aviárias , Galinhas , Regulação da Expressão Gênica no Desenvolvimento , Mutação , Proteínas do Tecido Nervoso , Fatores de Transcrição , Animais , Proteínas Aviárias/biossíntese , Proteínas Aviárias/genética , Padronização Corporal/genética , Embrião de Galinha , Mesoderma/embriologia , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
18.
Evodevo ; 5: 25, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25621146

RESUMO

A particularly critical event in avian evolution was the transition from long- to short-tailed birds. Primitive bird tails underwent significant alteration, most notably reduction of the number of caudal vertebrae and fusion of the distal caudal vertebrae into an ossified pygostyle. These changes, among others, occurred over a very short evolutionary interval, which brings into focus the underlying mechanisms behind those changes. Despite the wealth of studies delving into avian evolution, virtually nothing is understood about the genetic and developmental events responsible for the emergence of short, fused tails. In this review, we summarize the current understanding of the signaling pathways and morphological events that contribute to tail extension and termination and examine how mutations affecting the genes that control these pathways might influence the evolution of the avian tail. To generate a list of candidate genes that may have been modulated in the transition to short-tailed birds, we analyzed a comprehensive set of mouse mutants. Interestingly, a prevalent pleiotropic effect of mutations that cause fused caudal vertebral bodies (as in the pygostyles of birds) is tail truncation. We identified 23 mutations in this class, and these were primarily restricted to genes involved in axial extension. At least half of the mutations that cause short, fused tails lie in the Notch/Wnt pathway of somite boundary formation or differentiation, leading to changes in somite number or size. Several of the mutations also cause additional bone fusions in the trunk skeleton, reminiscent of those observed in primitive and modern birds. All of our findings were correlated to the fossil record. An open question is whether the relatively sudden appearance of short-tailed birds in the fossil record could be accounted for, at least in part, by the pleiotropic effects generated by a relatively small number of mutational events.

19.
Gene Expr Patterns ; 12(7-8): 245-53, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22634565

RESUMO

FGFs with similar sequences can play different roles depending on the model organisms examined. Determining these roles requires knowledge of spatio-temporal Fgf gene expression patterns. In this study, we report the cloning of chick Fgf5, 6 and 7, and examine their gene expression patterns by whole mount in situ hybridization. We show that Fgf5's spatio-temporally restricted expression pattern indicates a potentially novel role during inner ear development. Fgf6 and Fgf7, although belonging to different subfamilies with diverged sequences, are expressed in similar patterns within the mesoderm. Alignment of protein sequences and phylogenetic analysis demonstrate that FGF5 and FGF6 are highly conserved between chick, human, mouse and zebrafish. FGF7 is similarly conserved except for the zebrafish, which has considerably diverged.


Assuntos
Galinhas/metabolismo , Fator 5 de Crescimento de Fibroblastos/genética , Fator 6 de Crescimento de Fibroblastos/genética , Fator 7 de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento , Sequência de Aminoácidos , Animais , Embrião de Galinha , Galinhas/genética , Clonagem Molecular , Sequência Conservada , Orelha Interna/embriologia , Orelha Interna/metabolismo , Fator 5 de Crescimento de Fibroblastos/metabolismo , Fator 6 de Crescimento de Fibroblastos/metabolismo , Fator 7 de Crescimento de Fibroblastos/metabolismo , Hibridização In Situ , Funções Verossimilhança , Dados de Sequência Molecular , Especificidade de Órgãos , Filogenia
20.
PLoS One ; 7(7): e40974, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22844420

RESUMO

Araucana chickens are known for their rounded, tailless rumps and tufted ears. Inheritance studies have shown that the rumpless (Rp) and ear-tufted (Et) loci each act in an autosomal dominant fashion, segregate independently, and are associated with an increased rate of embryonic mortality. To find genomic regions associated with Rp and Et, we generated genome-wide SNP profiles for a diverse population of 60 Araucana chickens using the 60 K chicken SNP BeadChip. Genome-wide association studies using 40 rumpless and 11 tailed birds showed a strong association with rumpless on Gga 2 (P(raw) = 2.45×10(-10), P(genome) = 0.00575), and analysis of genotypes revealed a 2.14 Mb haplotype shared by all rumpless birds. Within this haplotype, a 0.74 Mb critical interval containing two Iroquois homeobox genes, Irx1 and Irx2, was unique to rumpless Araucana chickens. Irx1 and Irx2 are central for developmental prepatterning, but neither gene is known to have a role in mechanisms leading to caudal development. A second genome-wide association analysis using 30 ear-tufted and 28 non-tufted birds revealed an association with tufted on Gga 15 (P(raw) = 6.61×10(-7), P(genome) = 0.0981). We identified a 0.58 Mb haplotype common to tufted birds and harboring 7 genes. Because homozygosity for Et is nearly 100% lethal, we employed a heterozygosity mapping approach to prioritize candidate gene selection. A 60 kb region heterozygous in all Araucana chickens contains the complete coding sequence for TBX1 and partial sequence for GNB1L. TBX1 is an important transcriptional regulator of embryonic development and a key genetic determinant of human DiGeorge syndrome. Herein, we describe localization of Rp and Et and identification of positional candidate genes.


Assuntos
Galinhas/anatomia & histologia , Galinhas/genética , Orelha/anatomia & histologia , Estudo de Associação Genômica Ampla , Animais , Sequência de Bases , Cromossomos/genética , Loci Gênicos/genética , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA