Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Pathol ; 247(4): 435-443, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30566242

RESUMO

Hepatocellular carcinomas (HCCs) are known to be highly heterogenous. Within the extensive histopathological and molecular heterogeneity of HCC, tumors with mutations in CTNNB1, encoding ß-catenin (CTNNB1-mutated HCC), constitute a very homogeneous group. We previously characterized a distinctive metabolic and histological phenotype for CTNNB1-mutated HCC. They were found to be well-differentiated, almost never steatotic, and often cholestatic, with a microtrabecular or acinar growth pattern. Here, we investigated whether LKB1, which controls energy metabolism, cell polarity, and cell growth, mediates the specific phenotype of CTNNB1-mutated HCC. The LKB1 protein was overexpressed in CTNNB1-mutated HCC and oncogenic activation of ß-catenin in human HCC cells induced the post-transcriptional accumulation of the LKB1 protein encoded by the LKB1 (STK11) gene. Hierarchical clustering, based on the expression of a murine hepatic liver Lkb1 (Stk11) signature in a human public dataset, identified a HCC cluster, composed of almost all the CTNNB1-mutated HCC, that expresses a hepatic liver LKB1 program. This was confirmed by RT-qPCR of an independent cohort of CTNNB1-mutated HCC and the suppression of the LKB1-related profile upon ß-catenin silencing of CTNNB1-mutated human hepatoma cell lines. Previous studies described an epistatic relationship between LKB1 and CTNNB1 in which LKB1 acts upstream of CTNNB1. Thus, we also analyzed the consequences of Lkb1 deletion on the zonation of hepatic metabolism, known to be the hallmark of ß-catenin signaling in the liver. Lkb1 was required for the establishment of metabolic zonation in the mouse liver by positively modulating ß-catenin signaling. We identified positive reciprocal cross talk between the canonical Wnt pathway and LKB1, both in normal liver physiology and during tumorigenesis that likely participates in the amplification of the ß-catenin signaling by LKB1 and the distinctive phenotype of the CTNNB1-mutated HCC. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Mutação/genética , Proteínas Serina-Treonina Quinases/metabolismo , beta Catenina/fisiologia , Quinases Proteína-Quinases Ativadas por AMP , Animais , Deleção de Genes , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , Transfecção/métodos , Células Tumorais Cultivadas , Via de Sinalização Wnt/fisiologia
2.
Nat Commun ; 11(1): 6127, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33257663

RESUMO

Excessive glucose production by the liver is a key factor in the hyperglycemia observed in type 2 diabetes mellitus (T2DM). Here, we highlight a novel role of liver kinase B1 (Lkb1) in this regulation. We show that mice with a hepatocyte-specific deletion of Lkb1 have higher levels of hepatic amino acid catabolism, driving gluconeogenesis. This effect is observed during both fasting and the postprandial period, identifying Lkb1 as a critical suppressor of postprandial hepatic gluconeogenesis. Hepatic Lkb1 deletion is associated with major changes in whole-body metabolism, leading to a lower lean body mass and, in the longer term, sarcopenia and cachexia, as a consequence of the diversion of amino acids to liver metabolism at the expense of muscle. Using genetic, proteomic and pharmacological approaches, we identify the aminotransferases and specifically Agxt as effectors of the suppressor function of Lkb1 in amino acid-driven gluconeogenesis.


Assuntos
Aminoácidos/metabolismo , Gluconeogênese/fisiologia , Fígado/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Ativadas por AMP , Animais , Caquexia , Diabetes Mellitus Tipo 2/metabolismo , Jejum , Feminino , Glucose/metabolismo , Hepatócitos/metabolismo , Hiperglicemia/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética , Proteômica , Sarcopenia , Transaminases/metabolismo
3.
PLoS One ; 11(3): e0150997, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26974334

RESUMO

BACKGROUND: Fine tuning of the Wnt/ß-catenin signaling pathway is essential for the proper development and function of the liver. Aberrant activation of this pathway is observed in 20%-40% of hepatocellular carcinomas (HCC). Notum encodes a secreted Wnt deacylase that inhibits Wnt activity and thereby restricts the zone of activation of Wnt/ß-catenin signaling. An important role of NOTUM has been described in development in drosophila, planaria and zebrafish, but its role in the mammalian liver is unknown. Notum is required for spatial control of the Wnt/ß-catenin signaling in several animal models and the Wnt/ß-catenin pathway contributes to liver patterning involved in metabolic zonation. Therefore, Notum may be involved in the liver patterning induced by the Wnt/ß-catenin signaling during the adult stage. METHODOLOGY/PRINCIPAL FINDINGS: We generated a conditional Notum knockout mouse mutant to study the effect of the deletion of Notum in the liver. We show that Notum is a direct target of the Wnt/ß-catenin signaling in the liver. Liver-specific deletion of Notum did not modify liver zonation, but Notum deletion had a long-term effect on mouse physiology. In particular, male mutant mice developed metabolic disorders. CONCLUSION: We show that Notum is not a key actor of Wnt/ß-catenin-dependent liver patterning of adult mice, but has role in liver glucose homeostasis. Male mice deficient in Notum specifically in the liver develop metabolic dysfunctions implicating Notum in the development of Type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Esterases/genética , Deleção de Genes , Hepatócitos/enzimologia , Fígado/enzimologia , Via de Sinalização Wnt/genética , Animais , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/genética , Feminino , Masculino , Camundongos , Camundongos Mutantes , Especificidade de Órgãos
5.
PLoS One ; 10(12): e0145400, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26689699

RESUMO

BACKGROUND: LKB1 is an evolutionary conserved kinase implicated in a wide range of cellular functions including inhibition of cell proliferation, regulation of cell polarity and metabolism. When Lkb1 is inactivated in the liver, glucose homeostasis is perturbed, cellular polarity is affected and cholestasis develops. Cholestasis occurs as a result from deficient bile duct development, yet how LKB1 impacts on biliary morphogenesis is unknown. METHODOLOGY/PRINCIPAL FINDINGS: We characterized the phenotype of mice in which deletion of the Lkb1 gene has been specifically targeted to the hepatoblasts. Our results confirmed that lack of LKB1 in the liver results in bile duct paucity leading to cholestasis. Immunostaining analysis at a prenatal stage showed that LKB1 is not required for differentiation of hepatoblasts to cholangiocyte precursors but promotes maturation of the primitive ductal structures to mature bile ducts. This phenotype is similar to that obtained upon inactivation of Notch signaling in the liver. We tested the hypothesis of a functional overlap between the LKB1 and Notch pathways by gene expression profiling of livers deficient in Lkb1 or in the Notch mediator RbpJκ and identified a mutual cross-talk between LKB1 and Notch signaling. In vitro experiments confirmed that Notch activity was deficient upon LKB1 loss. CONCLUSION: LKB1 and Notch share a common genetic program in the liver, and regulate bile duct morphogenesis.


Assuntos
Ductos Biliares/embriologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Notch/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP , Animais , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares/metabolismo , Linhagem Celular Tumoral , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Colestase/genética , Colestase/patologia , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Fígado/embriologia , Camundongos Transgênicos , Morfogênese , Proteínas Serina-Treonina Quinases/genética , Receptores Notch/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA