Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Nat Immunol ; 23(6): 971-984, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35624211

RESUMO

Glioblastoma (GBM) is an incurable primary malignant brain cancer hallmarked with a substantial protumorigenic immune component. Knowledge of the GBM immune microenvironment during tumor evolution and standard of care treatments is limited. Using single-cell transcriptomics and flow cytometry, we unveiled large-scale comprehensive longitudinal changes in immune cell composition throughout tumor progression in an epidermal growth factor receptor-driven genetic mouse GBM model. We identified subsets of proinflammatory microglia in developing GBMs and anti-inflammatory macrophages and protumorigenic myeloid-derived suppressors cells in end-stage tumors, an evolution that parallels breakdown of the blood-brain barrier and extensive growth of epidermal growth factor receptor+ GBM cells. A similar relationship was found between microglia and macrophages in patient biopsies of low-grade glioma and GBM. Temozolomide decreased the accumulation of myeloid-derived suppressor cells, whereas concomitant temozolomide irradiation increased intratumoral GranzymeB+ CD8+T cells but also increased CD4+ regulatory T cells. These results provide a comprehensive and unbiased immune cellular landscape and its evolutionary changes during GBM progression.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Animais , Neoplasias Encefálicas/metabolismo , Receptores ErbB , Glioblastoma/metabolismo , Humanos , Camundongos , Análise de Sequência de RNA , Análise de Célula Única , Temozolomida/uso terapêutico , Microambiente Tumoral/genética
2.
Clin Neuropathol ; 39(3): 126-134, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31841105

RESUMO

The molecular alterations underlying progression of low-grade glial/glioneuronal tumors remain to be elucidated. We present a case of a 56-year-old male with an enhancing left temporal lobe tumor. Histology revealed a high-grade glioma adjacent to a low-grade glioneuronal component with abundant Rosenthal fibers, focal eosinophilic granular bodies, and CD34-positive neurons. The tumor was negative for IDH1 (R132H), BRAF-V600E, and the KIAA1549-BRAF fusion. Comparative genomic hybridization detected a large amplification (> 15 copies) of the Son of Sevenless 1 (SOS1) gene, a component of the MAPK pathway. Although activating mutations in the MAPK pathway occur frequently in gliomas and glioneuronal tumors, SOS1 gene amplification has not been reported previously. This case indicates another potential mechanism for MAPK activation in glial tumors.


Assuntos
Astrocitoma/genética , Glioma/patologia , Mutação/genética , Proteína SOS1/genética , Astrocitoma/diagnóstico , Astrocitoma/patologia , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/patologia , Hibridização Genômica Comparativa/métodos , Glioma/genética , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Proteínas Proto-Oncogênicas B-raf/genética
3.
Proc Natl Acad Sci U S A ; 112(11): 3493-8, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25733882

RESUMO

Oncogenic c-ros oncogene1 (ROS1) fusion kinases have been identified in a variety of human cancers and are attractive targets for cancer therapy. The MET/ALK/ROS1 inhibitor crizotinib (Xalkori, PF-02341066) has demonstrated promising clinical activity in ROS1 fusion-positive non-small cell lung cancer. However, emerging clinical evidence has shown that patients can develop resistance by acquiring secondary point mutations in ROS1 kinase. In this study we characterized the ROS1 activity of PF-06463922, a novel, orally available, CNS-penetrant, ATP-competitive small-molecule inhibitor of ALK/ROS1. In vitro, PF-06463922 exhibited subnanomolar cellular potency against oncogenic ROS1 fusions and inhibited the crizotinib-refractory ROS1(G2032R) mutation and the ROS1(G2026M) gatekeeper mutation. Compared with crizotinib and the second-generation ALK/ROS1 inhibitors ceritinib and alectinib, PF-06463922 showed significantly improved inhibitory activity against ROS1 kinase. A crystal structure of the PF-06463922-ROS1 kinase complex revealed favorable interactions contributing to the high-affinity binding. In vivo, PF-06463922 showed marked antitumor activity in tumor models expressing FIG-ROS1, CD74-ROS1, and the CD74-ROS1(G2032R) mutation. Furthermore, PF-06463922 demonstrated antitumor activity in a genetically engineered mouse model of FIG-ROS1 glioblastoma. Taken together, our results indicate that PF-06463922 has potential for treating ROS1 fusion-positive cancers, including those requiring agents with CNS-penetrating properties, as well as for overcoming crizotinib resistance driven by ROS1 mutation.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Lactamas Macrocíclicas/farmacologia , Mutação/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Pirazóis/farmacologia , Piridinas/farmacologia , Aminopiridinas , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Proliferação de Células/efeitos dos fármacos , Crizotinibe , Cristalografia por Raios X , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glioma/patologia , Humanos , Lactamas , Lactamas Macrocíclicas/química , Camundongos , Modelos Moleculares , Transdução de Sinais/efeitos dos fármacos
4.
Extracell Vesicle ; 32024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38872853

RESUMO

Antibodies are critical tools for research into extracellular vesicles (EVs) and other extracellular nanoparticles (ENPs), where they can be used for their identification, characterization, and isolation. However, the lack of a centralized antibody platform where researchers can share validation results thus minimizing wasted personnel time and reagents, has been a significant obstacle. Moreover, because the performance of antibodies varies among assay types and conditions, detailed information on assay variables and protocols is also of value. To facilitate sharing of results on antibodies that are relevant to EV/ENP research, the EV Antibody Database has been developed by the investigators of the Extracellular RNA Communication Consortium (ERCC). Hosted by the ExRNA Portal (https://exrna.org/resources/evabdb/), this interactive database aggregates and shares results from antibodies that have been tested by research groups in the EV/ENP field. Currently, the EV Antibody Database includes modules for antibodies tested for western Blot, EV Flow Cytometry, and EV Sandwich Assays, and holds 110 records contributed by 6 laboratories from the ERCC. Detailed information on antibody sources, assay conditions, and results is provided, including negative results. We encourage ongoing expert input and community feedback to enhance the database's utility, making it a valuable resource for comprehensive validation data on antibodies and protocols in EV biology.

5.
Cancer Immunol Res ; 11(5): 629-645, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36881002

RESUMO

The composition of the tumor immune microenvironment (TIME) is considered a key determinant of patients' response to immunotherapy. The mechanisms underlying TIME formation and development over time are poorly understood. Glioblastoma (GBM) is a lethal primary brain cancer for which there are no curative treatments. GBMs are immunologically heterogeneous and impervious to checkpoint blockade immunotherapies. Utilizing clinically relevant genetic mouse models of GBM, we identified distinct immune landscapes associated with expression of EGFR wild-type and mutant EGFRvIII cancer driver mutations. Over time, accumulation of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) was more pronounced in EGFRvIII-driven GBMs and was correlated with resistance to PD-1 and CTLA-4 combination checkpoint blockade immunotherapy. We determined that GBM-secreted CXCL1/2/3 and PMN-MDSC-expressed CXCR2 formed an axis regulating output of PMN-MDSCs from the bone marrow leading to systemic increase in these cells in the spleen and GBM tumor-draining lymph nodes. Pharmacologic targeting of this axis induced a systemic decrease in the numbers of PMN-MDSC, facilitated responses to PD-1 and CTLA-4 combination checkpoint blocking immunotherapy, and prolonged survival in mice bearing EGFRvIII-driven GBM. Our results uncover a relationship between cancer driver mutations, TIME composition, and sensitivity to checkpoint blockade in GBM and support the stratification of patients with GBM for checkpoint blockade therapy based on integrated genotypic and immunologic profiles.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Células Supressoras Mieloides , Animais , Camundongos , Glioblastoma/terapia , Glioblastoma/tratamento farmacológico , Antígeno CTLA-4/genética , Antígeno CTLA-4/metabolismo , Receptor de Morte Celular Programada 1 , Linhagem Celular Tumoral , Imunoterapia , Mutação , Microambiente Tumoral/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia
6.
Proc Natl Acad Sci U S A ; 106(8): 2712-6, 2009 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-19196966

RESUMO

Glioblastoma multiforme (GBM) is a highly lethal brain tumor for which little treatment is available. The epidermal growth factor receptor (EGFR) signaling pathway is thought to play a crucial role in GBM pathogenesis, initiating the early stages of tumor development, sustaining tumor growth, promoting infiltration, and mediating resistance to therapy. The importance of this pathway is highlighted in the fact that EGFR is mutationally activated in over 50% of GBM tumors. Consistent with this, we show here that concomitant activation of wild-type and/or mutant (vIII) EGFR and ablation of Ink4A/Arf and PTEN tumor suppressor gene function in the adult mouse central nervous system generates a fully penetrant, rapid-onset high-grade malignant glioma phenotype with prominent pathological and molecular resemblance to GBM in humans. Studies of the activation of signaling events in these GBM tumor cells revealed notable differences between wild-type and vIII EGFR-expressing cells. We show that wild-type EGF receptor signals through its canonical pathways, whereas tumors arising from expression of mutant EGFR(vIII) do not use these same pathways. Our findings provide critical insights into the role of mutant EGFR signaling function in GBM tumor biology and set the stage for testing of targeted therapeutic agents in the preclinical models described herein.


Assuntos
Neoplasias Encefálicas/metabolismo , Receptores ErbB/metabolismo , Genes Supressores de Tumor , Glioblastoma/metabolismo , Transdução de Sinais , Animais , Linhagem Celular Tumoral , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , PTEN Fosfo-Hidrolase/metabolismo
7.
iScience ; 25(8): 104653, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35958027

RESUMO

The extracellular RNA communication consortium (ERCC) is an NIH-funded program aiming to promote the development of new technologies, resources, and knowledge about exRNAs and their carriers. After Phase 1 (2013-2018), Phase 2 of the program (ERCC2, 2019-2023) aims to fill critical gaps in knowledge and technology to enable rigorous and reproducible methods for separation and characterization of both bulk populations of exRNA carriers and single EVs. ERCC2 investigators are also developing new bioinformatic pipelines to promote data integration through the exRNA atlas database. ERCC2 has established several Working Groups (Resource Sharing, Reagent Development, Data Analysis and Coordination, Technology Development, nomenclature, and Scientific Outreach) to promote collaboration between ERCC2 members and the broader scientific community. We expect that ERCC2's current and future achievements will significantly improve our understanding of exRNA biology and the development of accurate and efficient exRNA-based diagnostic, prognostic, and theranostic biomarker assays.

8.
Glia ; 59(8): 1155-68, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21305617

RESUMO

The recently published comprehensive profiles of genomic alterations in glioma have led to a refinement in our understanding of the molecular events that underlie this cancer. Using state-of-the-art genomic tools, several laboratories have created and characterized accurate genetically engineered mouse models of glioma based on specific genetic alterations observed in human tumors. These in vivo brain tumor models faithfully recapitulate the histopathology, etiology, and biology of gliomas and provide an exceptional experimental system to discover novel therapeutic targets and test therapeutic agents. This review focuses on mouse models of glioma with a special emphasis on genetically engineered models developed around key genetic glioma signature mutations in the PDGFR, EGFR, and NF1 genes and pathways. The resulting animal models have provided insight into many fundamental and mechanistic facets of tumor initiation, maintenance and resistance to therapeutic intervention and will continue to do so in the future.


Assuntos
Neoplasias Encefálicas/genética , Modelos Animais de Doenças , Glioma/genética , Animais , Neoplasias Encefálicas/classificação , Receptores ErbB/genética , Receptores ErbB/metabolismo , Glioma/classificação , Humanos , Camundongos , Camundongos Transgênicos , Mutação/genética , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Fator de Crescimento Derivado de Plaquetas/genética , Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais/genética
9.
Proc Natl Acad Sci U S A ; 105(31): 10853-8, 2008 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-18664580

RESUMO

Activation of the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway is a frequent occurrence in human cancers and a major promoter of chemotherapeutic resistance. Inhibition of one downstream target in this pathway, mTORC1, has shown potential to improve chemosensitivity. However, the mechanisms and genetic modifications that confer sensitivity to mTORC1 inhibitors remain unclear. Here, we demonstrate that loss of TSC2 in the E mu-myc murine lymphoma model leads to mTORC1 activation and accelerated oncogenesis caused by a defective apoptotic program despite compromised AKT phosphorylation. Tumors from Tsc2(+/-)E mu-Myc mice underwent rapid apoptosis upon blockade of mTORC1 by rapamycin. We identified myeloid cell leukemia sequence 1 (Mcl-1), a bcl-2 like family member, as a translationally regulated genetic determinant of mTORC1-dependent survival. Our results indicate that the extent by which rapamycin can modulate expression of Mcl-1 is an important feature of the rapamycin response.


Assuntos
Regulação Neoplásica da Expressão Gênica/fisiologia , Linfoma/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais/fisiologia , Sirolimo/metabolismo , Fatores de Transcrição/metabolismo , Animais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Immunoblotting , Imunoprecipitação , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sirolimo/farmacologia , Serina-Treonina Quinases TOR , Fatores de Transcrição/antagonistas & inibidores , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
10.
Oncogene ; 40(15): 2682-2696, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33707748

RESUMO

Focal amplification of epidermal growth factor receptor (EGFR) and its ligand-independent, constitutively active EGFRvIII mutant form are prominent oncogenic drivers in glioblastoma (GBM). The EGFRvIII gene rearrangement is considered to be an initiating event in the etiology of GBM, however, the mechanistic details of how EGFRvIII drives cellular transformation and tumor maintenance remain unclear. Here, we report that EGFRvIII demonstrates a reliance on PDGFRA co-stimulatory signaling during the tumorigenic process in a genetically engineered autochthonous GBM model. This dependency exposes liabilities that were leveraged using kinase inhibitors treatments in EGFRvIII-expressing GBM patient-derived xenografts (PDXs), where simultaneous pharmacological inhibition of EGFRvIII and PDGFRA kinase activities is necessary for anti-tumor efficacy. Our work establishes that EGFRvIII-positive tumors have unexplored vulnerabilities to targeted agents concomitant to the EGFR kinase inhibitor repertoire.


Assuntos
Neoplasias Encefálicas/metabolismo , Receptores ErbB/metabolismo , Glioblastoma/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Receptores ErbB/antagonistas & inibidores , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Células HEK293 , Xenoenxertos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores
11.
Biochim Biophys Acta ; 1795(1): 37-52, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18778756

RESUMO

The proto-oncogene receptor tyrosine kinase ROS was originally discovered through the identification of oncogenic variants isolated from tumors. These discoveries spearheaded a body of work aimed at elucidating the function of this evolutionarily conserved receptor in development and cancer. Through genetic and biochemical approaches, progress in the characterization of ROS points to distinctive roles in the program of epithelial cell differentiation during the development of a variety of organs. Although substantial, these advances remain hampered by the absence of an identified ligand, making ROS one of the last two remaining orphan receptor tyrosine kinases. Recent studies on the oncogenic activation of ROS as a result of different chromosomal rearrangements found in brain and lung cancers have shed light on the molecular mechanisms underlying ROS transforming activities. ROS and its oncogenic variants therefore constitute clinically relevant targets for cancer therapeutic intervention. This review highlights the various roles that this receptor plays in multiple system networks in normalcy and disease and points to future directions towards the elucidation of ROS function in the context of ligand identification, signaling pathways and clinical applications.


Assuntos
Crescimento e Desenvolvimento/genética , Neoplasias/genética , Proteínas Tirosina Quinases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Animais , Diferenciação Celular/genética , Proliferação de Células , Sobrevivência Celular/genética , Evolução Molecular , Humanos , Camundongos , Modelos Biológicos , Neoplasias/enzimologia , Neoplasias/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/fisiologia
12.
Adv Biosyst ; 4(12): e2000069, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32815324

RESUMO

Extracellular vesicles (EVs) offer a vehicle for diagnostic and therapeutic utility. EVs carry bioactive cargo and an accrued interest in their characterization has emerged. Efforts at identifying EV-enriched protein or RNA led to a surprising realization that EVs are excessively heterogeneous in nature. This diversity is originally attributed to vesicle sizes but it is becoming evident that different classes of EVs vehiculate distinct molecular cargos. Therefore, one of the current challenges in EV research is their selective isolation in quantities sufficient for efficient downstream analyses. Many protocols have been developed; however, reproducibility between research groups can be difficult to reach and inter-studies analyses of data from different isolation protocols are unmanageable. Therefore, there is an unmet need to optimize and standardize methods and protocols for the isolation and purification of EVs. This review focuses on the diverse techniques and protocols used over the years to isolate and purify EVs with a special emphasis on their adequacy for proteomics applications. By combining recent advances in specific isolation methods that yield superior quality of EV preparations and mass spectrometry techniques, the field is now prepared for transformative advancements in establishing distinct categorization and cargo identification of subpopulations based on EV surface markers.


Assuntos
Biomarcadores , Vesículas Extracelulares , Proteoma , Animais , Biomarcadores/análise , Biomarcadores/química , Biomarcadores/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Humanos , Espectrometria de Massas , Camundongos , Proteoma/análise , Proteoma/química , Proteoma/metabolismo , Proteômica
13.
Genesis ; 47(10): 659-66, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19603508

RESUMO

Genetically engineered, Cre/LoxP-conditional mouse models of cancer are designed to investigate the genetic contributors of tumorigenesis and are well suited to assess therapeutic treatment responses. The capacity to serially visualize tumor burden in a noninvasive fashion would greatly strengthen their applications. We report the generation of a bioluminescent reporter strain that allows monitoring of tumor development in preexisting conditional mouse tumor models. We demonstrate that, in a Cre-dependent glioblastoma multiforme model, tumor initiation and progression is readily monitored over time and that luminescent output is related to tumor volume. Our results show that this reporter strain may be combined with various Cre/loxP mouse tumor models to allow for noninvasive longitudinal monitoring of tumor growth and therapeutic response in vivo.


Assuntos
Transformação Celular Neoplásica/patologia , Genes Reporter , Glioblastoma/patologia , Integrases/genética , Luciferases/análise , Medições Luminescentes/métodos , Animais , Transformação Celular Neoplásica/química , Feminino , Glioblastoma/química , Luciferases/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
14.
Cell Rep ; 27(13): 3972-3987.e6, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242427

RESUMO

Cancer extracellular vesicles (EVs) are highly heterogeneous, which impedes our understanding of their function as intercellular communication agents and biomarkers. To deconstruct this heterogeneity, we analyzed extracellular RNAs (exRNAs) and extracellular proteins (exPTNs) from size fractionation of large, medium, and small EVs and ribonucleoprotein complexes (RNPs) from mouse glioblastoma cells by RNA sequencing and quantitative proteomics. mRNA from medium-sized EVs most closely reflects the cellular transcriptome, whereas small EV exRNA is enriched in small non-coding RNAs and RNPs contain precisely processed tRNA fragments. The exPTN composition of EVs and RNPs reveals that they are closely related by vesicle type, independent of their cellular origin, and single EV analysis reveals that small EVs are less heterogeneous in their protein content than larger ones. We provide a foundation for better understanding of segregation of macromolecules in glioma EVs through a catalog of diverse exRNAs and exPTNs.


Assuntos
Vesículas Extracelulares/metabolismo , Glioblastoma/metabolismo , Proteínas de Neoplasias/metabolismo , RNA Neoplásico/metabolismo , Animais , Linhagem Celular Tumoral , Vesículas Extracelulares/patologia , Glioblastoma/patologia , Camundongos
15.
Cancer Res ; 66(15): 7473-81, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16885344

RESUMO

Glioblastoma multiforme is the most common and lethal form of primary brain cancer. Diagnosis of this advanced glioma has a poor prognosis due to the ineffectiveness of current therapies. Aberrant expression of receptor tyrosine kinases (RTK) in glioblastoma multiformes is suggestive of their role in initiation and maintenance of these tumors of the central nervous system. In fact, ectopic expression of the orphan RTK ROS is a frequent event in human brain cancers, yet the pathologic significance of this expression remains undetermined. Here, we show that a glioblastoma-associated, ligand-independent rearrangement product of ROS (FIG-ROS) cooperates with loss of the tumor suppressor gene locus Ink4a;Arf to produce glioblastomas in the mouse. We show that this FIG-ROS-mediated tumor formation in vivo parallels the activation of the tyrosine phosphatase SH2 domain-containing phosphatase-2 (SHP-2) and a phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling axis in tumors and tumor-derived cell lines. We have established a fully penetrant preclinical model for adult onset of glioblastoma multiforme in keeping with major genetic events observed in the human disease. These findings provide novel and important insights into the role of ROS and SHP-2 function in solid tumor biology and set the stage for preclinical testing of targeted therapeutic approaches.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Astrocitoma/enzimologia , Astrocitoma/metabolismo , Astrocitoma/patologia , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/patologia , Inibidor p16 de Quinase Dependente de Ciclina/deficiência , Inibidor p16 de Quinase Dependente de Ciclina/genética , Ativação Enzimática , Glioblastoma/enzimologia , Glioblastoma/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Proteína Fosfatase 2 , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Quinases/biossíntese , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Tirosina Fosfatases Contendo o Domínio SH2 , Transdução de Sinais , Serina-Treonina Quinases TOR , Proteína Supressora de Tumor p14ARF/deficiência , Proteína Supressora de Tumor p14ARF/genética , Domínios de Homologia de src
17.
Life Sci Alliance ; 1(3): e201800029, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30456354

RESUMO

Activation of the platelet-derived growth factor receptors (PDGFRs) gives rise to some of the most important signaling pathways that regulate mammalian cellular growth, survival, proliferation, and differentiation and their misregulation is common in a variety of diseases. Herein, we present a comprehensive and detailed map of PDGFR signaling pathways assembled from literature and integrate this map in a bioinformatics protocol designed to extract meaningful information from large-scale quantitative proteomics mass spectrometry data. We demonstrate the usefulness of this approach using a new genetically engineered mouse model of PDGFRα-driven glioma. We discovered that acute PDGFRα stimulation differs considerably from chronic receptor activation in the regulation of protein translation initiation. Transient stimulation activates several key components of the translation initiation machinery, whereas the clinically relevant chronic activity of PDGFRα is associated with a significant shutdown of translational members. Our work defines a step-by-step approach to extract biologically relevant insights from global unbiased phospho-protein datasets to uncover targets for therapeutic assessment.

18.
Nat Commun ; 9(1): 3116, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30082792

RESUMO

Glioblastoma multiforme (GBM) is an aggressive primary brain cancer that includes focal amplification of PDGFRα and for which there are no effective therapies. Herein, we report the development of a genetically engineered mouse model of GBM based on autocrine, chronic stimulation of overexpressed PDGFRα, and the analysis of GBM signaling pathways using proteomics. We discover the tubulin-binding protein Stathmin1 (STMN1) as a PDGFRα phospho-regulated target, and that this mis-regulation confers sensitivity to vinblastine (VB) cytotoxicity. Treatment of PDGFRα-positive mouse and a patient-derived xenograft (PDX) GBMs with VB in mice prolongs survival and is dependent on STMN1. Our work reveals a previously unconsidered link between PDGFRα activity and STMN1, and highlight an STMN1-dependent cytotoxic effect of VB in GBM.


Assuntos
Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Estatmina/metabolismo , Vimblastina/farmacologia , Animais , Antineoplásicos/farmacologia , Apoptose , Ciclo Celular , Sobrevivência Celular , Células Cultivadas , Biologia Computacional , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Transplante de Neoplasias , Fosforilação , Proteômica , Transdução de Sinais
19.
Cancer Res ; 76(10): 2876-81, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27013191

RESUMO

A lack of experimental models of tumor heterogeneity limits our knowledge of the complex subpopulation dynamics within the tumor ecosystem. In high-grade gliomas (HGG), distinct hierarchical cell populations arise from different glioma stem-like cell (GSC) subpopulations. Extracellular vesicles (EV) shed by cells may serve as conduits of genetic and signaling communications; however, little is known about how HGG heterogeneity may impact EV content and activity. In this study, we performed a proteomic analysis of EVs isolated from patient-derived GSC of either proneural or mesenchymal subtypes. EV signatures were heterogeneous, but reflected the molecular make-up of the GSC and consistently clustered into the two subtypes. EV-borne protein cargos transferred between proneural and mesenchymal GSC increased protumorigenic behaviors in vitro and in vivo Clinically, analyses of HGG patient data from the The Cancer Genome Atlas database revealed that proneural tumors with mesenchymal EV signatures or mesenchymal tumors with proneural EV signatures were both associated with worse outcomes, suggesting influences by the proportion of tumor cells of varying subtypes in tumors. Collectively, our findings illuminate the heterogeneity among tumor EVs and the complexity of HGG heterogeneity, which these EVs help to maintain. Cancer Res; 76(10); 2876-81. ©2016 AACR.


Assuntos
Neoplasias Encefálicas/patologia , Carcinogênese , Vesículas Extracelulares/patologia , Glioma/patologia , Células-Tronco Mesenquimais/patologia , Células-Tronco Neoplásicas/patologia , Animais , Apoptose , Western Blotting , Neoplasias Encefálicas/metabolismo , Proliferação de Células , Vesículas Extracelulares/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Glioma/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Nus , Gradação de Tumores , Células-Tronco Neoplásicas/metabolismo , Proteômica , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Endocrinology ; 155(9): 3661-73, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24971615

RESUMO

The initial segment (IS) of the epididymis plays an essential role in male fertility. The IS epithelium is undifferentiated and nonfunctional at birth. Prior to puberty, the epithelium undergoes differentiation that leads to the formation of a fully functional organ. However, the mechanistic details of this program are not well understood. To explore this further, we used genetic engineering to create a kinase dead allele of the ROS1 receptor tyrosine kinase in mice and studied the effects of ROS1 tyrosine kinase activity on the differentiation of the IS epithelium. We show that the expression and activation of ROS1 coincides with the onset of differentiation and is exclusively located in the IS of the maturing and adult mouse epididymides. Here we demonstrate that the differentiation of the IS is dependent on the kinase activity of ROS1 and its downstream effector MEK1/2-ERK1/2 signaling axis. Using genetic engineering, we show that germ line ablation of ROS1 kinase activity leads to a failure of the IS epithelium to differentiate, and as a consequence sperm maturation and infertility were dramatically perturbed. Pharmacological inhibition of ROS1 kinase activity in the developing epididymis, however, only delayed differentiation transiently and did not result in infertility. Our results demonstrate that ROS1 kinase activity and the ensuing MEK1/2-ERK1/2 signaling are necessary for the postnatal development of the IS epithelium and that a sustained ablation of ROS1 kinase activity within the critical window of terminal differentiation abrogate the function of the epididymis and leads to sterility.


Assuntos
Diferenciação Celular , Epididimo/citologia , Epididimo/enzimologia , Células Epiteliais/enzimologia , Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Epididimo/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Masculino , Camundongos , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Espermatozoides/citologia , Espermatozoides/enzimologia , Espermatozoides/crescimento & desenvolvimento , Espermatozoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA