Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(10): e1011728, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37856551

RESUMO

Insectivorous Old World horseshoe bats (Rhinolophus spp.) are the likely source of the ancestral SARS-CoV-2 prior to its spillover into humans and causing the COVID-19 pandemic. Natural coronavirus infections of bats appear to be principally confined to the intestines, suggesting fecal-oral transmission; however, little is known about the biology of SARS-related coronaviruses in bats. Previous experimental challenges of Egyptian fruit bats (Rousettus aegyptiacus) resulted in limited infection restricted to the respiratory tract, whereas insectivorous North American big brown bats (Eptesicus fuscus) showed no evidence of infection. In the present study, we challenged Jamaican fruit bats (Artibeus jamaicensis) with SARS-CoV-2 to determine their susceptibility. Infection was confined to the intestine for only a few days with prominent viral nucleocapsid antigen in epithelial cells, and mononuclear cells of the lamina propria and Peyer's patches, but with no evidence of infection of other tissues; none of the bats showed visible signs of disease or seroconverted. Expression levels of ACE2 were low in the lungs, which may account for the lack of pulmonary infection. Bats were then intranasally inoculated with a replication-defective adenovirus encoding human ACE2 and 5 days later challenged with SARS-CoV-2. Viral antigen was prominent in lungs for up to 14 days, with loss of pulmonary cellularity during this time; however, the bats did not exhibit weight loss or visible signs of disease. From day 7, bats had low to moderate IgG antibody titers to spike protein by ELISA, and one bat on day 10 had low-titer neutralizing antibodies. CD4+ helper T cells became activated upon ex vivo recall stimulation with SARS-CoV-2 nucleocapsid peptide library and exhibited elevated mRNA expression of the regulatory T cell cytokines interleukin-10 and transforming growth factor-ß, which may have limited inflammatory pathology. Collectively, these data show that Jamaican fruit bats are poorly susceptible to SARS-CoV-2 but that expression of human ACE2 in their lungs leads to robust infection and an adaptive immune response with low-titer antibodies and a regulatory T cell-like response that may explain the lack of prominent inflammation in the lungs. This model will allow for insight of how SARS-CoV-2 infects bats and how bat innate and adaptive immune responses engage the virus without overt clinical disease.


Assuntos
COVID-19 , Quirópteros , Animais , Humanos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Pandemias , Jamaica , Linfócitos T Reguladores
2.
J Biol Chem ; 294(44): 16282-16296, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31519749

RESUMO

Insect-borne flaviviruses produce a 300-500-base long noncoding RNA, termed subgenomic flavivirus RNA (sfRNA), by stalling the cellular 5'-3'-exoribonuclease 1 (XRN1) via structures located in their 3' UTRs. In this study, we demonstrate that sfRNA production by Zika virus represses XRN1 analogous to what we have previously shown for other flaviviruses. Using protein-RNA reconstitution and a stringent RNA pulldown assay with human choriocarcinoma (JAR) cells, we demonstrate that the sfRNAs from both dengue type 2 and Zika viruses interact with a common set of 21 RNA-binding proteins that contribute to the regulation of post-transcriptional processes in the cell, including splicing, RNA stability, and translation. We found that four of these sfRNA-interacting host proteins, DEAD-box helicase 6 (DDX6) and enhancer of mRNA decapping 3 (EDC3) (two RNA decay factors), phosphorylated adaptor for RNA export (a regulator of the biogenesis of the splicing machinery), and apolipoprotein B mRNA-editing enzyme catalytic subunit 3C (APOBEC3C, a nucleic acid-editing deaminase), inherently restrict Zika virus infection. Furthermore, we demonstrate that the regulations of cellular mRNA decay and RNA splicing are compromised by Zika virus infection as well as by sfRNA alone. Collectively, these results reveal the large extent to which Zika virus-derived sfRNAs interact with cellular RNA-binding proteins and highlight the potential for widespread dysregulation of post-transcriptional control that likely limits the effective response of these cells to viral infection.


Assuntos
Estabilidade de RNA/fisiologia , RNA não Traduzido/metabolismo , Zika virus/genética , Regiões 3' não Traduzidas , Animais , Chlorocebus aethiops , RNA Helicases DEAD-box/metabolismo , Exorribonucleases/metabolismo , Flavivirus/genética , Genoma Viral/genética , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Conformação de Ácido Nucleico , Proteínas Proto-Oncogênicas/metabolismo , Splicing de RNA/fisiologia , RNA Mensageiro/metabolismo , RNA não Traduzido/genética , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Células Vero , Zika virus/metabolismo , Infecção por Zika virus/virologia
3.
Methods ; 155: 116-123, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30521847

RESUMO

Both RNA synthesis and decay must be balanced within a cell to achieve proper gene expression. Additionally, modulation of RNA decay specifically offers the cell an opportunity to rapidly reshape the transcriptome in response to specific stimuli or cues. Therefore, it is critical to understand the underlying mechanisms through which RNA decay contribute to gene expression homeostasis. Cell-free reconstitution approaches have been used successfully to reveal mechanisms associated with numerous post-transcriptional RNA processes. Historically, it has been difficult to examine all aspects of RNA decay in such an in vitro setting due, in part, to limitations on the ability to resolve larger RNAs through denaturing polyacrylamide gels. Thus, in vitro systems to study RNA decay rely on smaller, less biologically relevant RNA fragments. Herein, we present an approach to more confidently examine RNA decay parameters of large mRNA size transcripts through the inclusion of an engineered XRN1-resistant reporter RNA (xrRNA). By placing a 67 nucleotide xrRNA near the 3' end of any in vitro transcribed RNA with variable size or sequence context, investigators can observe the accumulation of the xrRNA as a readout of exoribonuclease-mediated 5'-3' decay. This approach may allow in vitro RNA decay assays to include full biologically relevant mRNA/mRNPs, extending their utility and allow improved experimental design considerations to promote biologically relevant outcomes.


Assuntos
Engenharia Genética/métodos , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Estabilidade de RNA , RNA Mensageiro/genética , RNA Viral/genética , Sistema Livre de Células , Eletroforese em Gel de Gradiente Desnaturante , Vírus da Dengue/química , Vírus da Dengue/genética , Exorribonucleases/genética , Exorribonucleases/metabolismo , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Transcrição Gênica
4.
J Biol Chem ; 293(1): 285-295, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29118186

RESUMO

Regulated mRNA decay plays a vital role in determining both the level and quality of cellular gene expression. Viral RNAs must successfully evade this host RNA decay machinery to establish a productive infection. One way for RNA viruses to accomplish this is to target the cellular exoribonuclease XRN1, because this enzyme is accessible in the cytoplasm and plays a major role in mRNA decay. Members of the Flaviviridae use RNA structures in their 5'- or 3'-untranslated regions to stall and repress XRN1, effectively stabilizing viral RNAs while also causing significant dysregulation of host cell mRNA stability. Here, we use a series of biochemical assays to demonstrate that the 3'-terminal portion of the nucleocapsid (N) mRNA of Rift Valley fever virus, a phlebovirus of the Bunyaviridae family, also can effectively stall and repress XRN1. The region responsible for impeding XRN1 includes a G-rich portion that likely forms a G-quadruplex structure. The 3'-terminal portions of ambisense-derived transcripts of multiple arenaviruses also stalled XRN1. Therefore, we conclude that RNAs from two additional families of mammalian RNA viruses stall and repress XRN1. This observation. emphasizes the importance and commonality of this viral strategy to interfere with the 5'-to-3'-exoribonuclease component of the cytoplasmic RNA decay machinery.


Assuntos
Exorribonucleases/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Phlebovirus/genética , RNA Viral/metabolismo , Vírus da Febre do Vale do Rift/genética , Regiões 3' não Traduzidas , Exorribonucleases/metabolismo , Células HEK293 , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , Análise de Sequência de RNA
5.
Viruses ; 10(3)2018 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-29562720

RESUMO

The RNA3 species of the beet necrotic yellow vein virus (BNYVV), a multipartite positive-stranded RNA phytovirus, contains the 'core' nucleotide sequence required for its systemic movement in Beta macrocarpa. Within this 'core' sequence resides a conserved "coremin" motif of 20 nucleotides that is absolutely essential for long-distance movement. RNA3 undergoes processing steps to yield a noncoding RNA3 (ncRNA3) possessing "coremin" at its 5' end, a mandatory element for ncRNA3 accumulation. Expression of wild-type (wt) or mutated RNA3 in Saccharomyces cerevisiae allows for the accumulation of ncRNA3 species. Screening of S.cerevisiae ribonuclease mutants identified the 5'-to-3' exoribonuclease Xrn1 as a key enzyme in RNA3 processing that was recapitulated both in vitro and in insect cell extracts. Xrn1 stalled on ncRNA3-containing RNA substrates in these decay assays in a similar fashion as the flavivirus Xrn1-resistant structure (sfRNA). Substitution of the BNYVV-RNA3 'core' sequence by the sfRNA sequence led to the accumulation of an ncRNA species in yeast in vitro but not in planta and no viral long distance occurred. Interestingly, XRN4 knockdown reduced BNYVV RNA accumulation suggesting a dual role for the ribonuclease in the viral cycle.


Assuntos
Exorribonucleases/metabolismo , Regulação Viral da Expressão Gênica , Vírus de Plantas/genética , Vírus de Plantas/metabolismo , RNA não Traduzido/genética , Ativação Enzimática , Exorribonucleases/genética , Expressão Gênica , Inativação Gênica , Interações Hospedeiro-Patógeno , Mutação , Doenças das Plantas/virologia , RNA não Traduzido/química , Transfecção , Transformação Genética , Replicação Viral
6.
Virus Res ; 212: 70-7, 2016 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-26368052

RESUMO

Members of the Flaviviridae (e.g., Dengue virus, West Nile virus, and Hepatitis C virus) contain a positive-sense RNA genome that encodes a large polyprotein. It is now also clear most if not all of these viruses also produce an abundant subgenomic long non-coding RNA. These non-coding RNAs, which are called subgenomic flavivirus RNAs (sfRNAs) or Xrn1-resistant RNAs (xrRNAs), are stable decay intermediates generated from the viral genomic RNA through the stalling of the cellular exoribonuclease Xrn1 at highly structured regions. Several functions of these flavivirus long non-coding RNAs have been revealed in recent years. The generation of these sfRNAs/xrRNAs from viral transcripts results in the repression of Xrn1 and the dysregulation of cellular mRNA stability. The abundant sfRNAs also serve directly as a decoy for important cellular protein regulators of the interferon and RNA interference antiviral pathways. Thus the generation of long non-coding RNAs from flaviviruses, hepaciviruses and pestiviruses likely disrupts aspects of innate immunity and may directly contribute to viral replication, cytopathology and pathogenesis.


Assuntos
Exorribonucleases/metabolismo , Infecções por Flavivirus/enzimologia , Flavivirus/metabolismo , RNA Longo não Codificante/metabolismo , RNA Viral/metabolismo , Animais , Exorribonucleases/genética , Flavivirus/genética , Infecções por Flavivirus/genética , Infecções por Flavivirus/virologia , Humanos , RNA Longo não Codificante/genética , RNA Viral/genética
7.
Curr Opin Virol ; 9: 14-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25233339

RESUMO

Viral RNAs accumulate to high levels during infection and interact with a variety of cellular factors including miRNAs and RNA-binding proteins. Although many of these interactions exist to directly modulate replication, translation and decay of viral transcripts, evidence is emerging that abundant viral RNAs may in certain cases serve as a sponge to sequester host non-coding RNAs and proteins. By effectively reducing the ability of cellular RNA binding proteins to regulate host cell gene expression, viral RNAs can alter the response to infection and favor viral replication. This review focuses on the potential contribution that sequestration of cellular proteins by viral RNAs makes to viral replication and cytopathology.


Assuntos
Interações Hospedeiro-Patógeno , Proteínas/metabolismo , Vírus de RNA/fisiologia , RNA não Traduzido/metabolismo , RNA Viral/metabolismo , Replicação Viral , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA