Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 566(7744): 403-406, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30728499

RESUMO

Most tumours have an aberrantly activated lipid metabolism1,2 that enables them to synthesize, elongate and desaturate fatty acids to support proliferation. However, only particular subsets of cancer cells are sensitive to approaches that target fatty acid metabolism and, in particular, fatty acid desaturation3. This suggests that many cancer cells contain an unexplored plasticity in their fatty acid metabolism. Here we show that some cancer cells can exploit an alternative fatty acid desaturation pathway. We identify various cancer cell lines, mouse hepatocellular carcinomas, and primary human liver and lung carcinomas that desaturate palmitate to the unusual fatty acid sapienate to support membrane biosynthesis during proliferation. Accordingly, we found that sapienate biosynthesis enables cancer cells to bypass the known fatty acid desaturation pathway that is dependent on stearoyl-CoA desaturase. Thus, only by targeting both desaturation pathways is the in vitro and in vivo proliferation of cancer cells that synthesize sapienate impaired. Our discovery explains metabolic plasticity in fatty acid desaturation and constitutes an unexplored metabolic rewiring in cancers.


Assuntos
Ácidos Graxos/química , Ácidos Graxos/metabolismo , Redes e Vias Metabólicas , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Proliferação de Células , Ácidos Graxos Dessaturases/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Ácidos Oleicos/metabolismo , Palmitatos/metabolismo , Ácidos Palmíticos/metabolismo , Estearoil-CoA Dessaturase/metabolismo
2.
Clin Transplant ; 36(4): e14570, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34954872

RESUMO

BACKGROUND: Transplantation is an effective treatment for end-stage lung disease, but the donor organ shortage is a major problem. Ex-vivo lung perfusion (EVLP) of extended criteria organs enables functional assessment to facilitate clinical decision-making around utilization, but the molecular processes occurring during EVLP, and how they differ between more or less viable lungs, remain to be determined. METHODS: We used RNA sequencing of lung tissue to delineate changes in gene expression occurring in 10 donor lungs undergoing EVLP and compare lungs that were deemed non-transplantable (n = 4) to those deemed transplantable (n = 6) following perfusion. RESULTS: We found that lungs deemed unsuitable for transplantation had increased induction of innate immune pathways and lower expression of oxidative phosphorylation related genes. Furthermore, the expression of SCGB1A1, a gene encoding an anti-inflammatory secretoglobin CC10, and other club cell genes was significantly decreased in non-transplantable lungs, while CHIT-1 was increased. Using a larger validation cohort (n = 17), we confirmed that the ratio of CHIT1 and SCGB1A1 protein levels in lung perfusate have potential utility to distinguish transplantable from non-transplantable lungs (AUC .81). CONCLUSIONS: Together, our data identify novel biomarkers that may assist with pre-transplant lung assessment, as well as pathways that may be amenable to therapeutic intervention during EVLPAQ6.


Assuntos
Transplante de Pulmão , Biomarcadores/metabolismo , Humanos , Pulmão , Perfusão , Doadores de Tecidos
3.
Cell Tissue Bank ; 18(4): 597-604, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28717878

RESUMO

Two-step perfusion is considered the gold standard method for isolating hepatocytes from human liver tissue. As perfusion may require a large tissue specimen, which is encapsulated and has accessible vessels for cannulation, only a limited number of tissue samples may be suitable. Therefore, the aim of this work was to develop an alternative method to isolate hepatocytes from non-encapsulated and small samples of human liver tissue. Healthy tissue from 44 human liver resections were graded for steatosis and tissue weights between 7.8 and 600 g were used for hepatocyte isolations. Tissue was diced and underwent a two-step digestion (EDTA and collagenase). Red cell lysis buffer was used to prevent red blood cell contamination and toxicity. Isolated hepatocyte viability was determined by trypan blue exclusion. Western blot and biochemical analyses were undertaken to ascertain cellular phenotype and function. Liver tissue that weighed ≥50 g yielded significantly higher (P < 0.01) cell viability than tissue <50 g. Viable cells secreted urea and displayed the phenotypic hepatocyte markers albumin and cytochrome P450. Presence of steatosis in liver tissue or intra-hepatocellular triglyceride content had no effect on cell viability. This methodology allows for the isolation of viable primary human hepatocytes from small amounts of "healthy" resected liver tissue which are not suitable for perfusion. This work provides the opportunity to increase the utilisation of resection surplus tissue, and may ultimately lead to an increased number of in vitro cellular studies being undertaken using the gold-standard model of human primary hepatocytes.


Assuntos
Separação Celular , Sobrevivência Celular/fisiologia , Hepatócitos/citologia , Fígado/citologia , Adulto , Idoso , Albuminas/metabolismo , Separação Celular/métodos , Células Cultivadas , Colagenases/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
4.
Transplantation ; 107(10): 2179-2189, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37143202

RESUMO

BACKGROUND: The association between interleukin-1ß (IL-1ß) concentrations during ex vivo lung perfusion (EVLP) with donor organ quality and post-lung transplant outcome has been demonstrated in several studies. The mechanism underlying IL-1ß-mediated donor lung injury was investigated using a paired single-lung EVLP model. METHODS: Human lung pairs were dissected into individual lungs and perfused on identical separate EVLP circuits, with one lung from each pair receiving a bolus of IL-1ß. Fluorescently labeled human neutrophils isolated from a healthy volunteer were infused into both circuits and quantified in perfusate at regular timepoints. Perfusates and tissues were subsequently analyzed, with perfusates also used in functional assays. RESULTS: Neutrophil numbers were significantly lower in perfusate samples collected from the IL-1ß-stimulated lungs consistent with increased neutrophil adhesion ( P = 0.042). Stimulated lungs gained significantly more weight than controls ( P = 0.046), which correlated with soluble intercellular adhesion molecule-1 (R 2 = 0.71, P = 0.0043) and von-Willebrand factor (R 2 = 0.39, P = 0.040) in perfusate. RNA expression patterns for inflammatory genes were differentially regulated via IL-1ß. Blockade of IL-1ß significantly reduced neutrophil adhesion in vitro ( P = 0.025). CONCLUSION: These data illustrate the proinflammatory functions of IL-1ß in the context of EVLP, suggesting this pathway may be susceptible to therapeutic modulation before transplantation.


Assuntos
Transplante de Pulmão , Humanos , Perfusão/efeitos adversos , Interleucina-1beta/farmacologia , Interleucina-1beta/metabolismo , Transplante de Pulmão/efeitos adversos , Pulmão/metabolismo , Inflamação
5.
Eur J Endocrinol ; 186(3): 367-377, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35038311

RESUMO

OBJECTIVE: Metformin is a first-line pharmacotherapy in the treatment of type 2 diabetes, a condition closely associated with non-alcoholic fatty liver disease (NAFLD). Although metformin promotes weight loss and improves insulin sensitivity, its effect on intrahepatic triglyceride (IHTG) remains unclear. We investigated the effect of metformin on IHTG, hepatic de novo lipogenesis (DNL), and fatty acid (FA) oxidation in vivo in humans. DESIGN AND METHODS: Metabolic investigations, using stable-isotope tracers, were performed in ten insulin-resistant, overweight/obese human participants with NAFLD who were treatment naïve before and after 12 weeks of metformin treatment. The effect of metformin on markers of s.c. adipose tissue FA metabolism and function, along with the plasma metabolome, was investigated. RESULTS: Twelve weeks of treatment with metformin resulted in a significant reduction in body weight and improved insulin sensitivity, but IHTG content and FA oxidation remained unchanged. Metformin treatment was associated with a significant decrease in VLDL-triglyceride (TG) concentrations and a significant increase in the relative contribution of DNL-derived FAs to VLDL-TG. There were subtle and relatively few changes in s.c. adipose tissue FA metabolism and the plasma metabolome with metformin treatment. CONCLUSIONS: We demonstrate the mechanisms of action of metformin whereby it improves insulin sensitivity and promotes weight loss, without improvement in IHTG; these observations are partly explained through increased hepatic DNL and a lack of change in FA oxidation.


Assuntos
Hipoglicemiantes/uso terapêutico , Resistência à Insulina/fisiologia , Lipogênese/fisiologia , Fígado/metabolismo , Metformina/uso terapêutico , Triglicerídeos/metabolismo , Adulto , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Estudos de Coortes , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Humanos , Hipoglicemiantes/farmacologia , Lipogênese/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Metformina/farmacologia , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Sobrepeso/tratamento farmacológico , Sobrepeso/metabolismo
6.
Metabol Open ; 14: 100177, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35313531

RESUMO

Background and aims: Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver condition. It is tightly associated with an adverse metabolic phenotype (including obesity and type 2 diabetes) as well as with obstructive sleep apnoea (OSA) of which intermittent hypoxia is a critical component. Hepatic de novo lipogenesis (DNL) is a significant contributor to hepatic lipid content and the pathogenesis of NAFLD and has been proposed as a key pathway to target in the development of pharmacotherapies to treat NAFLD. Our aim is to use experimental models to investigate the impact of hypoxia on hepatic lipid metabolism independent of obesity and metabolic disease. Methods: Human and rodent studies incorporating stable isotopes and hyperinsulinaemic euglycaemic clamp studies were performed to assess the regulation of DNL and broader metabolic phenotype by intermittent hypoxia. Cell-based studies, including pharmacological and genetic manipulation of hypoxia-inducible factors (HIF), were used to examine the underlying mechanisms. Results: Hepatic DNL increased in response to acute intermittent hypoxia in humans, without alteration in glucose production or disposal. These observations were endorsed in a prolonged model of intermittent hypoxia in rodents using stable isotopic assessment of lipid metabolism. Changes in DNL were paralleled by increases in hepatic gene expression of acetyl CoA carboxylase 1 and fatty acid synthase. In human hepatoma cell lines, hypoxia increased both DNL and fatty acid uptake through HIF-1α and -2α dependent mechanisms. Conclusions: These studies provide robust evidence linking intermittent hypoxia and the regulation of DNL in both acute and sustained in vivo models of intermittent hypoxia, providing an important mechanistic link between hypoxia and NAFLD.

7.
Ups J Med Sci ; 125(3): 211-216, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32208800

RESUMO

Background: Hepatic de novo lipogenesis (DNL) is ideally measured in very low-density lipoprotein (VLDL)-triacylglycerol (TAG). In the fasting state, the majority of plasma TAG typically represents VLDL-TAG; however, the merits of measuring DNL in total plasma TAG have not been assessed. This study aimed to assess the performance of DNL measured in VLDL-TAG (DNLVLDL-TAG) compared to that measured in total plasma TAG (DNLPlasma-TAG).Methods: Using deuterated water, newly synthesised palmitate was determined in fasting plasma VLDL-TAG and total TAG in 63 subjects taking part in multiple studies resulting in n = 123 assessments of DNL (%new palmitate of total palmitate). Subjects were split into tertiles to investigate if DNLPlasma-TAG could correctly classify subjects having 'high' (top tertile) and 'low' (bottom tertile) DNL. Repeatability was assessed in a subgroup (n = 16) with repeat visits.Results: DNLVLDL-TAG was 6.8% (IQR 3.6-10.7%) and DNLPlasma-TAG was 7.5% (IQR 4.0%-11.0%), and the correlation between the methods was rs = 0.62 (p < 0.0001). Bland-Altman plots demonstrated similar performance (mean difference 0.81%, p = 0.09); however, the agreement interval was wide (-9.6% to 11.2%). Compared to DNLVLDL-TAG, 54% of subjects with low DNL were correctly classified, whilst 66% of subjects with high DNL were correctly classified using DNLPlasma-TAG. Repeatability was acceptable (i.e. not different) at the group level, but the majority of subjects had an intra-individual variability over 25%.Conclusion: DNL in total plasma TAG performed similarly to DNL in VLDL-TAG at the group level, but there was large variability at the individual level. We suggest that plasma TAG could be useful for comparing DNL between groups.


Assuntos
Lipoproteínas VLDL/sangue , Lipoproteínas VLDL/fisiologia , Fígado/metabolismo , Triglicerídeos/sangue , Adulto , Feminino , Humanos , Lipogênese , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Triglicerídeos/fisiologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-32188593

RESUMO

OBJECTIVE: Increased hepatic de novo lipogenesis (DNL) is suggested to be an underlying cause in the development of nonalcoholic fatty liver disease and/or insulin resistance. It is suggested that omega-3 fatty acids (FA) lower hepatic DNL. We investigated the effects of omega-3 FA supplementation on hepatic DNL and FA oxidation using a combination of human in vivo and in vitro studies. RESEARCH DESIGN AND METHODS: Thirty-eight healthy men were randomized to take either an omega-3 supplement (4 g/day eicosapentaenoic acid (EPA)+docosahexaenoic acid (DHA) as ethyl esters) or placebo (4 g/day olive oil) and fasting measurements were made at baseline and 8 weeks. The metabolic effects of omega-3 FAs on intrahepatocellular triacylglycerol (IHTAG) content, hepatic DNL and FA oxidation were investigated using metabolic substrates labeled with stable-isotope tracers. In vitro studies, using a human liver cell-line was undertaken to gain insight into the intrahepatocellular effects of omega-3 FAs. RESULTS: Fasting plasma TAG concentrations significantly decreased in the omega-3 group and remained unchanged in the placebo group. Eight weeks of omega-3 supplementation significantly decreased IHTAG, fasting and postprandial hepatic DNL while significantly increasing dietary FA oxidation and fasting and postprandial plasma glucose concentrations. In vitro studies supported the in vivo findings of omega-3 FAs (EPA+DHA) decreasing intracellular TAG through a shift in cellular metabolism away from FA esterification toward oxidation. CONCLUSIONS: Omega-3 supplementation had a potent effect on decreasing hepatic DNL and increasing FA oxidation and plasma glucose concentrations. Attenuation of hepatic DNL may be considered advantageous; however, consideration is required as to what the potential excess of nonlipid substrates (eg, glucose) will have on intrahepatic and extrahepatic metabolic pathways. TRIAL REGISTRATION NUMBER: NCT01936779.


Assuntos
Ácidos Graxos Ômega-3 , Hepatopatia Gordurosa não Alcoólica , Glucose , Humanos , Lipogênese , Masculino , Hepatopatia Gordurosa não Alcoólica/prevenção & controle
9.
JGH Open ; 4(3): 433-440, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32514450

RESUMO

BACKGROUND AND AIM: Non-alcoholic fatty liver disease (NAFLD) is rapidly becoming the leading indication for liver transplant and is associated with increased cardiovascular and liver mortality, yet there are no licensed therapies. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are widely used for their glucose-lowering effects in patients with type 2 diabetes (T2D). Preclinical models have suggested a beneficial impact on NAFLD, but clinical data are limited, and there are currently no data on patients without T2D. We aimed to investigate the impact of SGLT2 inhibition on NAFLD in overweight, nondiabetic patients and establish the effect these agents may have on the processes that regulate hepatic steatosis in vivo. METHODS: We conducted an open-label, experimental medicine pilot study on insulin-resistant overweight/obese individuals (n = 10) using gold-standard noninvasive assessments of NAFLD phenotype, including magnetic resonance spectroscopy, two-step hyperinsulinemic euglycemic clamps, and stable isotope tracers to assess lipid and glucose metabolism. Investigations were performed before and after a 12-week treatment with the SGLT2 inhibitor, dapagliflozin. RESULTS: Despite a body weight reduction of 4.4 kg, hepatic steatosis was unchanged following treatment. Hepatic glucose production increased, and there was impairment of glucose disposal during the low-dose insulin infusion. Although circulating, nonesterified, fatty acid levels did not change, the ability of insulin to suppress lipolysis was reduced. CONCLUSIONS: SGLT2 inhibition for 12 weeks does not improve hepatic steatosis in patients without T2D. Additional studies in patients with established T2D or impairments of fasting or postprandial glucose homeostasis are needed to determine whether SGLT2 inhibition represents a viable therapeutic strategy for NAFLD. (http://clinicaltrials.gov Number NCT02696941).

10.
Nutrients ; 10(9)2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30205493

RESUMO

Dietary free sugars have received much attention over the past few years. Much of the focus has been on the effect of fructose on hepatic de novo lipogenesis (DNL). Therefore the aim of the present study was to investigate the effects of meals high and low in fructose on postprandial hepatic DNL and fatty acid partitioning and dietary fatty acid oxidation. Sixteen healthy adults (eight men, eight women) participated in this randomised cross-over study; study days were separated by a 4-week wash-out period. Hepatic DNL and dietary fatty acid oxidation were assessed using stable-isotope tracer methodology. Consumption of the high fructose meal significantly increased postprandial hepatic DNL to a greater extent than consumption of the low fructose meal and this effect was evident in women but not men. Despite an increase in hepatic DNL, there was no change in dietary fatty acid oxidation. Taken together, our data show that women are more responsive to ingestion of higher amounts of fructose than men and if continued over time this may lead to changes in hepatic fatty acid partitioning and eventually liver fat content.


Assuntos
Açúcares da Dieta/administração & dosagem , Frutose/administração & dosagem , Lipogênese , Fígado/metabolismo , Adulto , Estudos Cross-Over , Açúcares da Dieta/metabolismo , Ácidos Graxos/metabolismo , Feminino , Frutose/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Oxirredução , Período Pós-Prandial , Fatores Sexuais , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA